Solveeit Logo

Question

Question: Let $S_1$: $x^2 + y^2 = 9$ and $S_2$: $(x - 2)^2 + y^2 = 1$. Then the locus of center of a variable ...

Let S1S_1: x2+y2=9x^2 + y^2 = 9 and S2S_2: (x2)2+y2=1(x - 2)^2 + y^2 = 1. Then the locus of center of a variable circle SS which touches S1S_1 internally and S2S_2 externally always passes through the points:

A

(12,±82)(\frac{1}{2}, \pm \frac{\sqrt{8}}{2})

B

(0,±3)(0, \pm \sqrt{3})

C

(2,±32)(2, \pm \frac{3}{2})

D

(1,±2)(1, \pm 2)

Answer

(2,±32)(2, \pm \frac{3}{2})

Explanation

Solution

Let O1=(0,0)O_1=(0,0) and R1=3R_1=3 be the center and radius of S1S_1. Let O2=(2,0)O_2=(2,0) and R2=1R_2=1 be the center and radius of S2S_2. Let O=(x,y)O=(x,y) and rr be the center and radius of the variable circle SS.

Since SS touches S1S_1 internally, the distance between their centers is d(O1,O)=R1rd(O_1, O) = R_1 - r. x2+y2=3r()\sqrt{x^2 + y^2} = 3 - r \quad (*) Since SS touches S2S_2 externally, the distance between their centers is d(O2,O)=R2+rd(O_2, O) = R_2 + r. (x2)2+y2=1+r()\sqrt{(x-2)^2 + y^2} = 1 + r \quad (**) From (*), r=3x2+y2r = 3 - \sqrt{x^2 + y^2}. Substituting this into (**): (x2)2+y2=1+(3x2+y2)\sqrt{(x-2)^2 + y^2} = 1 + (3 - \sqrt{x^2 + y^2}) (x2)2+y2=4x2+y2\sqrt{(x-2)^2 + y^2} = 4 - \sqrt{x^2 + y^2} x2+y2+(x2)2+y2=4\sqrt{x^2 + y^2} + \sqrt{(x-2)^2 + y^2} = 4 This is the definition of an ellipse with foci at F1=(0,0)F_1=(0,0) and F2=(2,0)F_2=(2,0). The sum of the distances is 2a=42a=4, so a=2a=2. The distance between the foci is 2c=(20)2+(00)2=22c = \sqrt{(2-0)^2 + (0-0)^2} = 2, so c=1c=1. Using a2=b2+c2a^2 = b^2 + c^2, we get 22=b2+122^2 = b^2 + 1^2, so 4=b2+14 = b^2 + 1, which means b2=3b^2 = 3. The center of the ellipse is the midpoint of the foci: (0+22,0+02)=(1,0)(\frac{0+2}{2}, \frac{0+0}{2}) = (1,0). The equation of the ellipse is (x1)2a2+y2b2=1\frac{(x-1)^2}{a^2} + \frac{y^2}{b^2} = 1, which is (x1)24+y23=1\frac{(x-1)^2}{4} + \frac{y^2}{3} = 1.

Now we check the points: For (2,±32)(2, \pm \frac{3}{2}): (21)24+(±32)23=124+943=14+912=14+34=1\frac{(2-1)^2}{4} + \frac{(\pm \frac{3}{2})^2}{3} = \frac{1^2}{4} + \frac{\frac{9}{4}}{3} = \frac{1}{4} + \frac{9}{12} = \frac{1}{4} + \frac{3}{4} = 1. This point lies on the ellipse.