Solveeit Logo

Question

Mathematics Question on Integration by Partial Fractions

Let S={z=x+iy:|z-1+i|≥|z|,|z|<2,|z+i|=|z-1|}.
Then the set of all values of x, for which w = 2x + iy ∈ S for some y ∈ R is

A

(-2\sqrt2,122\frac{1}{2\sqrt2})

B

(-12\frac{1}{\sqrt2},14\frac{1}{4})

C

(-2\sqrt2,12\frac{1}{2})

D

(12\frac{1}{\sqrt2},122\frac{1}{2\sqrt2})

Answer

(-12\frac{1}{\sqrt2},14\frac{1}{4})

Explanation

Solution

S:{z=x+iy:|z–1+i|≥|z|,|z|<2,|z–i|=|z–1|}|z–1+i|≥|z|
|z| < 2
|z–i|=|z–1|
∵ w∈S and w=2x+iy
2x<12\frac{1}{2} ∴x<14\frac{1}{4}
(2x)2+(−2x)2<4
4x2+4x2<4
x2<12\frac{1}{2}
⇒x∈(−12\frac{1}{\sqrt2},12\frac{1}{\sqrt2})
∴x∈(−12\frac{1}{2},14\frac{1}{4})
So, the correct option is (B).