Solveeit Logo

Question

Mathematics Question on complex numbers

Let S=zC:z1=1S = \\{ z \in \mathbb{C} : |z - 1| = 1 \\} and (21)(z+z)i(zz)=22.(\sqrt{2} - 1)(z + \overline{z}) - i(z - \overline{z}) = 2\sqrt{2}.
Let z1,z2Sz_1, z_2 \in S be such that z1=maxzSz|z_1| = \max_{z \in S} |z| and z2=minzSz|z_2| = \min_{z \in S} |z|.
Then 2z1z22\sqrt{2}|z_1 - z_2|^2 equals:

A

1

B

4

C

3

D

2

Answer

2

Explanation

Solution

Let Z=x+iyZ = x + iy.

Then (x1)2+y2=1(1)\text{Then } (x - 1)^2 + y^2 = 1 \quad \cdots (1) and (21)(2x)+i(2y)=22\text{and } (\sqrt{2} - 1)(2x) + i(2y) = 2\sqrt{2}

    (21)x+y=2(2)\implies (\sqrt{2} - 1)x + y = \sqrt{2} \quad \cdots (2)

Solving (1) and (2), we get:
x=1orx=12(3)x = 1 \quad \text{or} \quad x = -\frac{1}{\sqrt{2}} \quad \cdots (3)

On solving (3) with (2), we get:
For x=1    y=1    Z1=1+i\text{For } x = 1 \implies y = 1 \implies Z_1 = 1 + i
and for
x=12    y=212    Z2=(12)+i(212).x = -\frac{1}{\sqrt{2}} \implies y = \sqrt{2} - \frac{1}{\sqrt{2}} \implies Z_2 = \left( -\frac{1}{\sqrt{2}} \right) + i \left( \sqrt{2} - \frac{1}{\sqrt{2}} \right).

Now:
2Z1Z22\sqrt{2} |Z_1 - Z_2|^2

=(1+12)2+i(1(21))2= \left| \left( 1 + \frac{1}{\sqrt{2}} \right) \sqrt{2} + i\left( 1 - (\sqrt{2} - 1) \right) \right|^2

=(2)2=2= |(\sqrt{2})^2| = 2