Question
Mathematics Question on Functions
Let S=θ∈[0,2π):tan(πcosθ)+tan(πsinθ)=0 Then θ∈s∑sin2(θ+4π) is equal to _______
Answer
The correct answer is 2
tan(πcosθ)+tan(πsinθ)=0
tan(πcosθ)=−tan(πsinθ)
tan(πcosθ)=tan(−πsinθ)
πcosθ=nπ−πsinθ
sinθ+cosθ=n where n∈I
possible values are n=0,1 and −1 because
−2≤sinθ+cosθ≤2
Now it gives θ∈{0,2π,43π,47π,23π,π}
So θ∈S∑sin2(θ+4π)=2(0)+4(21)=2