Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

Let S=θ(0,2π):7cos2θ3sin2θ2cos22θ=2S = \\{θ ∈ (0, 2π) : 7 cos^2θ – 3 sin^2θ – 2 cos^22θ = 2\\}.
Then, the sum of roots of all the equations x22(tan2θ+cot2θ)x+6sin2θ=0,θSx^2 – 2 (tan^2θ + cot^2θ) x + 6 sin^2θ = 0, θ ∈ S, is _______.

Answer

7 cos2θ – 3 sin2θ – 2 cos22θ = 2
4(1+cos2θ2)+3cos2θ2cos22θ=2\begin{array}{l} \Rightarrow 4\left(\frac{1+\cos2\theta}{2}\right)+3\cos2\theta-2\cos^22\theta=2 \end{array}
⇒ 2 + 5 cos2θ – 2 cos2 2θ = 2
⇒ cos 2θ = 0 or 5/2 (rejected)
cos2θ=0=1tan2θ1+tan2θtan2θ=1\begin{array}{l} \Rightarrow \cos2\theta=0=\frac{1-\tan^2\theta}{1+\tan^2\theta}\Rightarrow \tan^2\theta =1\end{array}
∴ Sum of roots = 2 (tan2θ + cot2θ) = 2 × 2 = 4
But as tanθ = ±1 for π/4,3π/4,5π/4,7π/4π/4, 3π/4, 5π/4, 7π/4 in the interval (0,2π0, 2π)
∴ Four equations will be formed
Hence, sum of roots of all the equations = 4 × 4 = 16.