Solveeit Logo

Question

Question: Let S = {$\sqrt{n}$ : 1 < n < 50 and n is odd} Let a ∈ S and A= $\begin{bmatrix} 1 & 0 & a \\ -1 & ...

Let S = {n\sqrt{n} : 1 < n < 50 and n is odd}

Let a ∈ S and A= [10a110a01]\begin{bmatrix} 1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1 \end{bmatrix}

If aS\sum_{a \in S}det(adjAadjA) = 100λ\lambda, then λ\lambda, is equal to

A

218

B

221

C

663

D

1717

Answer

221

Explanation

Solution

The set S contains elements of the form n\sqrt{n} where n is an odd integer such that 1 < n < 50.

The odd integers n satisfying 1 < n < 50 are 3, 5, 7, ..., 49.

So, S = {3,5,7,...,49\sqrt{3}, \sqrt{5}, \sqrt{7}, ..., \sqrt{49}}.

Let aSa \in S. The matrix A is given by A=[10a110a01]A = \begin{bmatrix} 1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1 \end{bmatrix}

We need to calculate det(adjA). For a square matrix A of order n, det(adjA) = (detA)n1^{n-1}. Here n=3, so det(adjA) = (detA)2^2.

First, calculate the determinant of A: det(A) = 11001010a1+a11a01 \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} - 0 \begin{vmatrix} -1 & 0 \\ -a & 1 \end{vmatrix} + a \begin{vmatrix} -1 & 1 \\ -a & 0 \end{vmatrix}

det(A) = 1(1×10×0)0+a((1)×01×(a))1(1 \times 1 - 0 \times 0) - 0 + a((-1) \times 0 - 1 \times (-a))

det(A) = 1(1)+a(0+a)=1+a21(1) + a(0 + a) = 1 + a^2.

Since aSa \in S, a=na = \sqrt{n} for some odd integer n with 1 < n < 50. Thus, a2=na^2 = n, and n3n \ge 3. So det(A) = 1+n41+n \ge 4, which means A is invertible and the formula det(adjA) = (detA)2^2 is valid.

det(adjA) = (1+a2)2(1+a^2)^2.

The given condition is aS\sum_{a \in S}det(adjA) = 100λ\lambda.

Substituting det(adjA) and the form of a: aS(1+a2)2=100λ\sum_{a \in S} (1+a^2)^2 = 100\lambda.

Since aSa \in S, a=na = \sqrt{n} where n is an odd integer from 3 to 49. Thus a2=na^2 = n.

The sum becomes n{3,5,...,49},n is odd(1+n)2\sum_{n \in \{3, 5, ..., 49\}, n \text{ is odd}} (1+n)^2.

The values of n are 3, 5, 7, ..., 49.

The values of 1+n1+n are 1+3=4,1+5=6,1+7=8,...,1+49=501+3=4, 1+5=6, 1+7=8, ..., 1+49=50.

The sum is 42+62+82+...+5024^2 + 6^2 + 8^2 + ... + 50^2.

This is a sum of squares of even numbers. We can write each term as (2k)2(2k)^2.

4=2×24 = 2 \times 2, so 42=(2×2)24^2 = (2 \times 2)^2.

6=2×36 = 2 \times 3, so 62=(2×3)26^2 = (2 \times 3)^2.

8=2×48 = 2 \times 4, so 82=(2×4)28^2 = (2 \times 4)^2.

...

50=2×2550 = 2 \times 25, so 502=(2×25)250^2 = (2 \times 25)^2.

The sum is k=225(2k)2\sum_{k=2}^{25} (2k)^2.

k=225(2k)2=k=2254k2=4k=225k2\sum_{k=2}^{25} (2k)^2 = \sum_{k=2}^{25} 4k^2 = 4 \sum_{k=2}^{25} k^2.

We use the formula for the sum of the first m squares: k=1mk2=m(m+1)(2m+1)6\sum_{k=1}^{m} k^2 = \frac{m(m+1)(2m+1)}{6}.

k=225k2=k=125k212\sum_{k=2}^{25} k^2 = \sum_{k=1}^{25} k^2 - 1^2.

k=125k2=25(25+1)(2×25+1)6=25×26×516\sum_{k=1}^{25} k^2 = \frac{25(25+1)(2 \times 25 + 1)}{6} = \frac{25 \times 26 \times 51}{6}.

25×26×516=25×(2×13)×(3×17)2×3=25×13×17\frac{25 \times 26 \times 51}{6} = \frac{25 \times (2 \times 13) \times (3 \times 17)}{2 \times 3} = 25 \times 13 \times 17.

25×13=32525 \times 13 = 325.

325×17=325×(10+7)=3250+325×7=3250+2275=5525325 \times 17 = 325 \times (10+7) = 3250 + 325 \times 7 = 3250 + 2275 = 5525.

So, k=125k2=5525\sum_{k=1}^{25} k^2 = 5525.

Now, k=225k2=k=125k212=55251=5524\sum_{k=2}^{25} k^2 = \sum_{k=1}^{25} k^2 - 1^2 = 5525 - 1 = 5524.

The sum aS\sum_{a \in S}det(adjA) is 4×k=225k2=4×55244 \times \sum_{k=2}^{25} k^2 = 4 \times 5524.

4×5524=220964 \times 5524 = 22096.

The given equation is aS\sum_{a \in S}det(adjA) = 100λ\lambda.

22096=100λ22096 = 100\lambda.

λ=22096100=220.96\lambda = \frac{22096}{100} = 220.96.

The calculated value of λ\lambda is 220.96, which is not among the given options (218, 221, 663, 1717). This discrepancy suggests a potential error in the problem statement or the provided options. However, based on the standard properties of matrices and determinants, and careful calculation, the steps followed are correct.

Given the options, the most plausible answer is 221. This suggests that the value on the left side of the equation should have been 22100 instead of 22096. This could happen if, for example, the sum was meant to include one more term or exclude one term, or if the coefficient was slightly different.