Solveeit Logo

Question

Question: Let $S = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt...

Let S=1+112+122+1+122+132+1+132+142+...+1+120242+120252S = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + ... + \sqrt{1 + \frac{1}{2024^2} + \frac{1}{2025^2}}

then (2025)S20242024\frac{(2025)S - 2024}{2024} is

Answer

2025

Explanation

Solution

The problem asks us to evaluate an expression involving a sum SS. The sum SS is given by:

S=1+112+122+1+122+132+1+132+142+...+1+120242+120252S = \sqrt{1 + \frac{1}{1^2} + \frac{1}{2^2}} + \sqrt{1 + \frac{1}{2^2} + \frac{1}{3^2}} + \sqrt{1 + \frac{1}{3^2} + \frac{1}{4^2}} + ... + \sqrt{1 + \frac{1}{2024^2} + \frac{1}{2025^2}}

First, let's analyze the general term of the sum, Tn=1+1n2+1(n+1)2T_n = \sqrt{1 + \frac{1}{n^2} + \frac{1}{(n+1)^2}}. We need to simplify the expression inside the square root: 1+1n2+1(n+1)21 + \frac{1}{n^2} + \frac{1}{(n+1)^2}.

Combine the terms by finding a common denominator n2(n+1)2n^2(n+1)^2:

1+1n2+1(n+1)2=n2(n+1)2+(n+1)2+n2n2(n+1)21 + \frac{1}{n^2} + \frac{1}{(n+1)^2} = \frac{n^2(n+1)^2 + (n+1)^2 + n^2}{n^2(n+1)^2}

Let's simplify the numerator:

n2(n+1)2+(n+1)2+n2=n2(n2+2n+1)+(n2+2n+1)+n2=n4+2n3+n2+n2+2n+1+n2=n4+2n3+3n2+2n+1n^2(n+1)^2 + (n+1)^2 + n^2 = n^2(n^2+2n+1) + (n^2+2n+1) + n^2 = n^4 + 2n^3 + n^2 + n^2 + 2n + 1 + n^2 = n^4 + 2n^3 + 3n^2 + 2n + 1

This expression is a perfect square. It is (n2+n+1)2(n^2+n+1)^2. Let's verify:

(n2+n+1)2=((n2+n)+1)2=(n2+n)2+2(n2+n)(1)+12=(n4+2n3+n2)+(2n2+2n)+1=n4+2n3+3n2+2n+1(n^2+n+1)^2 = ((n^2+n)+1)^2 = (n^2+n)^2 + 2(n^2+n)(1) + 1^2 = (n^4+2n^3+n^2) + (2n^2+2n) + 1 = n^4+2n^3+3n^2+2n+1

So, the numerator is indeed (n2+n+1)2(n^2+n+1)^2.

Therefore, the expression inside the square root becomes:

1+1n2+1(n+1)2=(n2+n+1)2n2(n+1)2=(n2+n+1n(n+1))21 + \frac{1}{n^2} + \frac{1}{(n+1)^2} = \frac{(n^2+n+1)^2}{n^2(n+1)^2} = \left(\frac{n^2+n+1}{n(n+1)}\right)^2

Now, the general term TnT_n is:

Tn=(n2+n+1n(n+1))2T_n = \sqrt{\left(\frac{n^2+n+1}{n(n+1)}\right)^2}

Since nn is a positive integer, n(n+1)n(n+1) and n2+n+1n^2+n+1 are positive, so we can remove the square root:

Tn=n2+n+1n(n+1)T_n = \frac{n^2+n+1}{n(n+1)}

We can rewrite this expression by splitting the numerator:

Tn=n(n+1)+1n(n+1)=n(n+1)n(n+1)+1n(n+1)=1+1n(n+1)T_n = \frac{n(n+1)+1}{n(n+1)} = \frac{n(n+1)}{n(n+1)} + \frac{1}{n(n+1)} = 1 + \frac{1}{n(n+1)}

Using partial fraction decomposition for 1n(n+1)\frac{1}{n(n+1)}:

1n(n+1)=1n1n+1\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}

So, the general term simplifies to:

Tn=1+(1n1n+1)T_n = 1 + \left(\frac{1}{n} - \frac{1}{n+1}\right)

Now, let's write out the sum SS:

S=n=12024Tn=n=12024(1+1n1n+1)S = \sum_{n=1}^{2024} T_n = \sum_{n=1}^{2024} \left(1 + \frac{1}{n} - \frac{1}{n+1}\right)

This is a telescoping sum. Let's expand the terms:

S=(1+1112)+(1+1213)+(1+1314)+...+(1+1202412025)S = \left(1 + \frac{1}{1} - \frac{1}{2}\right) + \left(1 + \frac{1}{2} - \frac{1}{3}\right) + \left(1 + \frac{1}{3} - \frac{1}{4}\right) + ... + \left(1 + \frac{1}{2024} - \frac{1}{2025}\right)

The '1' term appears 2024 times. The intermediate fractional terms cancel out:

S=(1×2024)+(112025)=2024+112025=202512025S = (1 \times 2024) + \left(1 - \frac{1}{2025}\right) = 2024 + 1 - \frac{1}{2025} = 2025 - \frac{1}{2025}

Finally, we need to calculate the value of (2025)S20242024\frac{(2025)S - 2024}{2024}. First, calculate (2025)S(2025)S:

(2025)S=2025(202512025)=202522025×12025=202521(2025)S = 2025 \left(2025 - \frac{1}{2025}\right) = 2025^2 - 2025 \times \frac{1}{2025} = 2025^2 - 1

Now substitute this into the expression:

(2025)S20242024=(202521)20242024=20252120242024=2025220252024\frac{(2025)S - 2024}{2024} = \frac{(2025^2 - 1) - 2024}{2024} = \frac{2025^2 - 1 - 2024}{2024} = \frac{2025^2 - 2025}{2024}

Factor out 2025 from the numerator:

2025(20251)2024=2025×20242024\frac{2025(2025 - 1)}{2024} = \frac{2025 \times 2024}{2024}

Cancel out 2024 from the numerator and denominator:

=2025= 2025