Solveeit Logo

Question

Mathematics Question on Trigonometry

Let S=sin22θ:(sin4θ+cos4θ)x2+(sin2θ)x+(sin6θ+cos6θ)=0has real roots.S = \\{ \sin^2 2\theta : (\sin^4 \theta + \cos^4 \theta)x^2 + (\sin 2\theta)x + (\sin^6 \theta + \cos^6 \theta) = 0 \, \text{has real roots} \\}. If α\alpha and β\beta are the smallest and largest elements of the set SS, respectively, then 3((α2)2+(β1)2)3 \big((\alpha - 2)^2 + (\beta - 1)^2 \big) equals:

Answer

To determine the values of α\alpha and β\beta, we analyze the discriminant DD of the given quadratic equation:

D=(sin2θ)24(1sin22θ2)(134sin22θ).D = (\sin 2\theta)^2 - 4 \left( 1 - \frac{\sin^2 2\theta}{2} \right) \left( 1 - \frac{3}{4}\sin^2 2\theta \right).

Expanding this, we get:

D=(sin2θ)24(154sin22θ+38sin42θ).D = (\sin 2\theta)^2 - 4 \left( 1 - \frac{5}{4}\sin^2 2\theta + \frac{3}{8}\sin^4 2\theta \right).

Simplifying further,

D = -\frac{3}{2}\sin^4 2\theta + 6\sin^2 2\theta - 4 > 0\.

This inequality leads us to solve for sin22θ\sin^2 2\theta:

3\sin^4 2\theta - 12\sin^2 2\theta + 8 < 0\.

Solving this inequality, we get:

sin22θ=12±14412.86=12±436=2±233.\sin^2 2\theta = \frac{12 \pm \sqrt{144 - 12.8}}{6} = \frac{12 \pm 4\sqrt{3}}{6} = 2 \pm \frac{2\sqrt{3}}{3}.

Thus, we have:

sin22θ=2±23,but sin22θ[0,1].\sin^2 2\theta = 2 \pm \frac{2}{\sqrt{3}}, \quad \text{but } \sin^2 2\theta \in [0, 1].

Therefore,

α=223,β=1.\alpha = 2 - \frac{2}{\sqrt{3}}, \quad \beta = 1.

Now, we calculate 3((α2)2+(β1)2)3((\alpha - 2)^2 + (\beta - 1)^2):

(α2)2=43,(β1)2=0.(\alpha - 2)^2 = \frac{4}{3}, \quad (\beta - 1)^2 = 0. 3((α2)2+(β1)2)=3×43=4.3((\alpha - 2)^2 + (\beta - 1)^2) = 3 \times \frac{4}{3} = 4.