Question
Mathematics Question on Trigonometry
Let S=sin22θ:(sin4θ+cos4θ)x2+(sin2θ)x+(sin6θ+cos6θ)=0has real roots. If α and β are the smallest and largest elements of the set S, respectively, then 3((α−2)2+(β−1)2) equals:
To determine the values of α and β, we analyze the discriminant D of the given quadratic equation:
D=(sin2θ)2−4(1−2sin22θ)(1−43sin22θ).
Expanding this, we get:
D=(sin2θ)2−4(1−45sin22θ+83sin42θ).
Simplifying further,
D = -\frac{3}{2}\sin^4 2\theta + 6\sin^2 2\theta - 4 > 0\.
This inequality leads us to solve for sin22θ:
3\sin^4 2\theta - 12\sin^2 2\theta + 8 < 0\.
Solving this inequality, we get:
sin22θ=612±144−12.8=612±43=2±323.
Thus, we have:
sin22θ=2±32,but sin22θ∈[0,1].
Therefore,
α=2−32,β=1.
Now, we calculate 3((α−2)2+(β−1)2):
(α−2)2=34,(β−1)2=0. 3((α−2)2+(β−1)2)=3×34=4.