Solveeit Logo

Question

Mathematics Question on Sequence and series

Let Sn=113+1+213+23+1+2+313+23+33+......+1+2+...+n13+23+....+n3.S_{n} = \frac{1}{1^{3}} + \frac{1+2}{1^{3} + 2^{3}} + \frac{1+2+3}{1^{3} + 2^{3} + 3^{3}} + ...... + \frac{1+2+...+n}{1^{3} + 2^{3} +.... +n^{3}} . . If 100Sn=n,100 \, S_n = n , then nn is equal to :

A

199

B

99

C

200

D

19

Answer

199

Explanation

Solution

Tn=n+(n+1)2(n+(n+1)2)2T_{n}=\frac{\frac{n+(n+1)}{2}}{\left(\frac{n+(n+1)}{2}\right)^{2}}
Tn=2n(n+1)T_{n}=\frac{2}{n(n+1)}
Sn=2n=1n(1n1n+1)S_{n}=2 \displaystyle\sum_{n=1}^{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)
=2{112 1213=2\begin{cases}1-\frac{1}{2} \\\ \frac{1}{2}-\frac{1}{3}\end{cases}

=2\left\\{1-\frac{1}{n+1}\right\\}
Sn=2nn+1S_{n}=\frac{2 n}{n+1}
100×2nn+1=n100 \times \frac{2 n}{n+1}=n
n+1=200n+1=200
n=199n=199