Question
Mathematics Question on Integrals of Some Particular Functions
Let Sn=k=0∑nn2+kn+k2nandTn=k=0∑n−1n2+kn+k21,for n=1,2,3,... Then,
A
Sn<33π
B
Sn>33π
C
Tn<33π
D
Tn>33π
Answer
Tn>33π
Explanation
Solution
Given, Sn = k=0∑nn2+kn+k2n
=k=0∑nn1.(1+nk+n2k21)<limn→∞k=0∑nn1.(1+nk+(nk)21)
∫011+x+x21dx=[32tan−1(32(x+21))]01
=32.(3π−6π)=33π
i.e..,Sn<33π
Similarly, Tn>33π