Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let Sn=k=0nnn2+kn+k2andTn=k=0n11n2+kn+k2,forS_n= \displaystyle \sum_{k=0}^n \frac{n}{n^2+kn+k^2} \, and \, T_n= \displaystyle \sum_{k=0}^{n-1} \frac{1}{n^2+kn+k^2} , \, for \, n=1,2,3n = 1 ,2 ,3 ,... Then,

A

Sn<π33S_n < \frac{\pi}{3\sqrt 3}

B

Sn>π33S_n > \frac{\pi}{3\sqrt 3}

C

Tn<π33T_n < \frac{\pi}{3\sqrt 3}

D

Tn>π33T_n > \frac{\pi}{3\sqrt 3}

Answer

Tn>π33T_n > \frac{\pi}{3\sqrt 3}

Explanation

Solution

Given, Sn = k=0nnn2+kn+k2 \displaystyle \sum_{k=0}^n \frac{n}{n^2+kn+k^2}
=k=0n1n.(11+kn+k2n2)<limnk=0n1n.(11+kn+(kn)2)=\displaystyle \sum_{k=0}^n \frac{1}{n}.\Bigg(\frac{1}{1+\frac{k}{n}+\frac{k^2}{n^2}}\Bigg) \, \, < lim_{n \to \, \infty} \, \displaystyle \sum_{k=0}^n \frac{1}{n}.\Bigg(\frac{1}{1+\frac{k}{n}+\bigg(\frac{k}{n}\bigg)^2}\Bigg)
0111+x+x2dx=[23tan1(23(x+12))]01\int_0^1 \frac{1}{1+x+x^2}dx = \bigg[ \frac{2}{\sqrt 3} tan^{-1} \bigg(\frac{2}{\sqrt 3}\bigg(x+\frac{1}{2}\bigg)\bigg)\bigg]_0^1
=23.(π3π6)=π33=\frac{2}{\sqrt 3}.\bigg(\frac{\pi}{3}-\frac{\pi}{6}\bigg) =\frac{\pi}{3\sqrt 3}
i.e..,Sn<π33i.e.., \, \, \, \, \, \, \, \, \, \, \, \, S_n < \frac{\pi}{3\sqrt 3}
Similarly, Tn>π33 \, \, \, \, \, \, \, \, \, \, T_n > \frac{\pi}{3\sqrt 3}