Solveeit Logo

Question

Question: Let \[{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {...

Let Sn=113+1+213+23+1+2+313+23+33++1+2++n13+23++n3{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}. If 100Sn=n100{S_n} = n, then find the value of nn.
A). 199
B). 99
C). 200
D). 19

Explanation

Solution

Here, in the question, we are given Sn=113+1+213+23+1+2+313+23+33++1+2++n13+23++n3{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}} which is the sum to nn terms of a kind of special series. In order to find nn such that 100Sn=n100{S_n} = n, we have to simplify Sn{S_n} in terms of nn. Then using the given equation 100Sn=n100{S_n} = n, we can find the value of nn.
Formulae used:
Sn=k=1nak{S_n} = \sum\limits_{k = 1}^n {{a_k}} , where Sn{S_n} is the sum of nn terms of the series and ak{a_k} is the kth{k^{th}} term of the series.
Sum of first nn natural numbers=n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2}
Sum of the cubes of first nn natural numbers=(n(n+1)2)2{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}

Complete step-by-step solution:
Let us collect the given information,
Sn=113+1+213+23+1+2+313+23+33++1+2++n13+23++n3{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}, and,
100Sn=n100{S_n} = n
Now, we have, ak=1+2+3++k13+23+33++k3{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}
Sn=113+1+213+23+1+2+313+23+33++1+2++n13+23++n3{S_n} = \dfrac{1}{{{1^3}}} + \dfrac{{1 + 2}}{{{1^3} + {2^3}}} + \dfrac{{1 + 2 + 3}}{{{1^3} + {2^3} + {3^3}}} + \ldots \ldots + \dfrac{{1 + 2 + \ldots + n}}{{{1^3} + {2^3} + \ldots + {n^3}}}
Observing carefully the series, we get the kth{k^{th}} term of the series as:
ak=1+2+3++k13+23+33++k3{a_k} = \dfrac{{1 + 2 + 3 + \ldots + k}}{{{1^3} + {2^3} + {3^3} + \ldots + {k^3}}}
Using identities,
Sum of first nn natural numbers =n(n+1)2\dfrac{{n\left( {n + 1} \right)}}{2}
Sum of the cubes of first nn natural numbers =(n(n+1)2)2{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}, we get,
ak=k(k+1)2(k(k+1)2)2{a_k} = \dfrac{{\dfrac{{k\left( {k + 1} \right)}}{2}}}{{{{\left( {\dfrac{{k\left( {k + 1} \right)}}{2}} \right)}^2}}}
Simplifying it, we get,
ak=2k(k+1)\Rightarrow {a_k} = \dfrac{2}{{k\left( {k + 1} \right)}}
ak=2k2k+1\Rightarrow {a_k} = \dfrac{2}{k} - \dfrac{2}{{k + 1}}
Now, we have to find the Sum of nn terms, which is Sn{S_n} from the kth{k^{th}} term,
Using the formula Sn=k=1nak{S_n} = \sum\limits_{k = 1}^n {{a_k}} , we get
Sn=k=1n(2k2k+1){S_n} = \sum\limits_{k = 1}^n {\left( {\dfrac{2}{k} - \dfrac{2}{{k + 1}}} \right)}
Expanding this, we get
Sn=222+123+2324++2n12n+2n2n+1{S_n} = 2-\dfrac{2}{2}+1- \dfrac{2}{3} + \dfrac{2}{3} - \dfrac{2}{4} + \cdots + \dfrac{2}{{n - 1}} - \dfrac{2}{n} + \dfrac{2}{n} - \dfrac{2}{{n + 1}}
In the above expression we have an additive inverse of each term present except for the first and the last term. Therefore,

\Rightarrow {S_n} = \dfrac{{2n}}{{n + 1}} $$ Given that $$100{S_n} = n$$ Putting the value of $${S_n}$$, we get $$ 100 \times \dfrac{{2n}}{{n + 1}} = n \\\ \Rightarrow 200n = n\left( {n + 1} \right) \\\ \Rightarrow n + 1 = 200 \\\ \Rightarrow n = 199 $$ Hence, the value of $$n$$ is $$199$$. **Hence option A. $$199$$ is the correct answer.** **Note:** The series given in the question is a special kind of series. Special series are the series which are special in some or other way. It might be arithmetic or geometric or any other type of progressive series. While solving such types of questions, we must find $${k^{th}}$$ otherwise it would be very hectic to solve. With the help of $${k^{th}}$$ term, we can find $${S_n}$$ easily.