Solveeit Logo

Question

Mathematics Question on Sequence and series

Let SnS_n denote the sum of the first nn terms of an arithmetic progression. If S10=390S_{10} = 390 and the ratio of the tenth and the fifth terms is 15:715 : 7, then S15S5S_{15} - S_{5} is equal to:

A

800

B

890

C

790

D

690

Answer

790

Explanation

Solution

Given:

S10=390,Ratio of the 10th and 5th terms=T10T5=157S_{10} = 390, \quad \text{Ratio of the 10th and 5th terms} = \frac{T_{10}}{T_5} = \frac{15}{7}

Let aa be the first term and dd be the common difference of the arithmetic progression.

The sum of the first nn terms of an AP is given by:

Sn=n2[2a+(n1)d]S_n = \frac{n}{2}[2a + (n - 1)d]

For n=10n = 10:

S10=102[2a+9d]=5(2a+9d)=390S_{10} = \frac{10}{2}[2a + 9d] = 5(2a + 9d) = 390 2a+9d=78(1)2a + 9d = 78 \quad \text{(1)}

The 10th term T10T_{10} and 5th term T5T_5 are given by:

T10=a+9d,T5=a+4dT_{10} = a + 9d, \quad T_5 = a + 4d

Given:

T10T5=a+9da+4d=157\frac{T_{10}}{T_5} = \frac{a + 9d}{a + 4d} = \frac{15}{7}

Cross-multiplying:

7(a+9d)=15(a+4d)7(a + 9d) = 15(a + 4d)

Expanding:

7a+63d=15a+60d7a + 63d = 15a + 60d

Rearranging terms:

8a=3d    d=8a3(2)8a = 3d \implies d = \frac{8a}{3} \quad \text{(2)}

Substituting d=8a3d = \frac{8a}{3} into equation (1):

2a+9(8a3)=782a + 9\left(\frac{8a}{3}\right) = 78

Multiplying through by 3:

6a+72a=2346a + 72a = 234

Combining terms:

78a=234    a=378a = 234 \implies a = 3

Substituting a=3a = 3 back into equation (2):

d=8×33=8d = \frac{8 \times 3}{3} = 8

Finding S15S_{15} and S5S_5:

S15=152[2a+14d]=152[2×3+14×8]=152[6+112]=152×118=885S_{15} = \frac{15}{2}[2a + 14d] = \frac{15}{2}[2 \times 3 + 14 \times 8] = \frac{15}{2}[6 + 112] = \frac{15}{2} \times 118 = 885 S5=52[2a+4d]=52[2×3+4×8]=52[6+32]=52×38=95S_5 = \frac{5}{2}[2a + 4d] = \frac{5}{2}[2 \times 3 + 4 \times 8] = \frac{5}{2}[6 + 32] = \frac{5}{2} \times 38 = 95

Calculating S15S5S_{15} - S_5:

S15S5=88595=790S_{15} - S_5 = 885 - 95 = 790

Conclusion: S15S5=790S_{15} - S_5 = 790.