Solveeit Logo

Question

Mathematics Question on Sequence and series

Let SnS_n denote the sum of first n terms of an A.P.A.P. If S4=34,S5=60S_4 = -3 4 , S_5 = -60 and S6=93S_6 = -93, then the common difference and the first term of the A.P.A.P. are respectively

A

-7 ,2

B

7, -4

C

7, -2

D

-7,-2

Answer

-7 ,2

Explanation

Solution

Given,
Sn=S_{n}= Sum of first nn terms of an APAP
Let aa and dd be the first term and common difference of an AP.
S4=42[2a+(41)d]=34\therefore\,S_{4}=\frac{4}{2}[2 a+(4-1) d]=-34
(Sn=n2[2a+(n1)d])\left(\because S_{n}=\frac{n}{2}[2 a+(n-1) d]\right)
2a+3d=17(i)\Rightarrow\, 2 a+3 d=-17\,\,\,\,\,\dots(i)
and S5=52[2a+(51)d]=60 S_{5}=\frac{5}{2}[2 a+(5-1) d]=-60
2a+4d=24(ii)\Rightarrow\, 2 a+4 d=-24\,\,\,\,\,\dots(ii)
On subtracting E (i) from E (ii), we get
d=7d=-7
Then, from E (i), 2a21=172 a-21=-17
2a=4\Rightarrow\, 2 a=4
a=2\Rightarrow a=2
Hence, common difference, d=7d=-7 and first term =2=2