Solveeit Logo

Question

Mathematics Question on Sequence and series

Let SnS_{n} denote the sum of first nn terms of an A.PA.P. and S2n=3SnS_{2n} = 3S_{n}. If S3n=kSnS_{3n} =k S_{n}, then the value of kk is equal to

A

44

B

55

C

66

D

77

Answer

66

Explanation

Solution

Given, S2n=3SnS_{2 n}=3 S_{n}
2n2[2a+(2n1)d]=3n2[2a+(n1)d]\frac{2 n}{2}[2 a+(2 n-1) d]=3 \cdot \frac{n}{2}[2 a+(n-1) d]
Where, aa and dd are first term and common difference of an AP respectively.
4a+2(2n1)d=6a+3(n1)d\Rightarrow \, 4 a+2(2 n-1) d=6 a+3(n-1) d
2a+(3n34n+2)d=0\Rightarrow \, 2 a+(3 n-3-4 n+2) d=0
2a+(n1)d=0\Rightarrow \, 2 a+(-n-1) d=0
2a+(n+1)(d)=0\Rightarrow \, 2 a+(n+1)(-d)=0
2a=(n+1)d(i)\Rightarrow \, 2 a=(n+1) d \,\,\,\,\,\,\dots(i)
Now, S3nSn=3n2[2a+(3n1)d]n2[2a+(n1)d]\frac{S_{3 n}}{S_{n}}=\frac{\frac{3 n}{2}[2 a+(3 n-1) d]}{\frac{n}{2}[2 a+(n-1) d]}
=3[(n+1)d+(3n1)d][(n+1)d+(n1)d]=\frac{3[(n+1) d+(3 n-1) d]}{[(n+1) d+(n \quad 1) d]} [From E (i)]
=3[(n+1+3n1)d](n+1+n1)d=3(4nd)(2nd)=6=\frac{3[(n+1+3 n-1) d]}{(n+1+n-1) d}=\frac{3(4 n d)}{(2 n d)}=6
S3n=6Sn\Rightarrow\, S_{3 n}=6 S_{n}
On compare with, S3n=kSnS_{3 n}=k S_{n}
k=6\Rightarrow \, k=6