Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Let sn=cos(nπ10),n=1,2,3,s_n = \cos \left(\frac{n\pi}{10}\right), n=1,2,3,\ldots Then the value of s1s2s10s1+s2++s10\frac{s_{1}s_{2}\ldots s_{10}}{s_{1}+s_{2}+\ldots+s_{10}} is equal to

A

12\frac{1}{\sqrt{2}}

B

32\frac{\sqrt{3}}{2}

C

222\sqrt{2}

D

0

Answer

0

Explanation

Solution

Given, sn=cos(nπ10)s_{n}=\cos \left(\frac{n \pi}{10}\right)
Now, S1S2S3S10S_{1} \,S_{2}\, S_{3} \ldots S_{10}
=cos(π10)cos(2π10)cos(5π10)cos(10π10)=\cos \left(\frac{\pi}{10}\right) \cos \left(\frac{2 \pi}{10}\right) \ldots \cos \left(\frac{5 \pi}{10}\right) \ldots \cos \left(\frac{10 \pi}{10}\right)
=cos(π10)cos(π5)cos(π2)cos(π)=\cos \left(\frac{\pi}{10}\right) \cos \left(\frac{\pi}{5}\right) \ldots \cos \left(\frac{\pi}{2}\right) \ldots \cos (\pi)
=cos(π10)cos(π5)0cosπ=0=\cos \left(\frac{\pi}{10}\right) \cos \left(\frac{\pi}{5}\right) \ldots 0 \ldots \cos \pi=0
S1S2S3S10S1+s2++s10=0\therefore \frac{S_{1}\, S_{2}\, S_{3} \ldots S_{10}}{S_{1}+s_{2}+\ldots+s_{10}}=0