Solveeit Logo

Question

Mathematics Question on Sequence and series

Let SnS_n be the sum to nn-terms of an arithmetic progression 3,7,11,3, 7, 11, \ldots.
If 40<(6n(n+1)k=1nSk)<4240 < \left( \frac{6}{n(n+1)} \sum_{k=1}^{n} S_k \right) <42, then nn equals ___.

Answer

Identify the arithmetic progression: First term a=3a = 3, common difference d=4d = 4.

Find the sum of the first nn terms SnS_n:

Sn=n2(2a+(n1)d)=n2(4n+2)=n(2n+1).S_n = \frac{n}{2} \left( 2a + (n - 1)d \right) = \frac{n}{2} \left(4n + 2\right) = n(2n + 1).

Calculate k=1nSk\sum_{k=1}^{n} S_k:

k=1nSk=k=1nk(2k+1)=2k=1nk2+k=1nk.\sum_{k=1}^{n} S_k = \sum_{k=1}^{n} k(2k + 1) = 2 \sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k.

Using formulas:

k=1nk2=n(n+1)(2n+1)6,k=1nk=n(n+1)2,\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}, \quad \sum_{k=1}^{n} k = \frac{n(n + 1)}{2},

thus,

k=1nSk=n(n+1)(4n+5)6.\sum_{k=1}^{n} S_k = \frac{n(n + 1)(4n + 5)}{6}.

Set up the inequality:

\frac{6}{n(n + 1)} \times \frac{n(n + 1)(4n + 5)}{6} < 42\.

Simplifying gives:

4n+5<42    4n<37    n<9.25.4n + 5 < 42 \implies 4n < 37 \implies n < 9.25.

Find the largest integer nn:

n=9.n = 9.
Thus, n=9n = 9.