Question
Mathematics Question on Sequence and series
Let Sn be the sum to n-terms of an arithmetic progression 3,7,11,….
If 40<(n(n+1)6∑k=1nSk)<42, then n equals ___.
Answer
Identify the arithmetic progression: First term a=3, common difference d=4.
Find the sum of the first n terms Sn:
Sn=2n(2a+(n−1)d)=2n(4n+2)=n(2n+1).
Calculate ∑k=1nSk:
∑k=1nSk=∑k=1nk(2k+1)=2∑k=1nk2+∑k=1nk.
Using formulas:
∑k=1nk2=6n(n+1)(2n+1),∑k=1nk=2n(n+1),
thus,
∑k=1nSk=6n(n+1)(4n+5).
Set up the inequality:
\frac{6}{n(n + 1)} \times \frac{n(n + 1)(4n + 5)}{6} < 42\.
Simplifying gives:
4n+5<42⟹4n<37⟹n<9.25.
Find the largest integer n:
n=9.
Thus, n=9.