Solveeit Logo

Question

Mathematics Question on complex numbers

Let
S = \left\\{z∈C : z^2+\overline{z} = 0 \right\\}. Then zS(Re(z)+Im(z))∑_{z∈S}(Re(z)+Im(z))
is equal to____.

Answer

The correct answer is 0
z2+z=0∵ z^2+\overline{z} = 0 Let z=x+iyz = x+iy
x2+y2+2ixy+xiy=0∴ x^2+y^2+2ixy+x-iy = 0
(x2y2+x)+i(2xyy)=0(x^2-y^2+x)+i(2xy-y) = 0
x2+y2=0∴ x^2+y^2 = 0 and (2x1)y=0(2x-1)y = 0
If x=+12x = +\frac{1}{2} then y=±32y = ±\frac{\sqrt3}{2}
And if y = 0 then x = 0, –1
z=0+0i,1+0i,12+32i,1232iz = \\{ 0 + 0i, -1 + 0i, \frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i \\}
(Re(z)+m(z))=0∴ ∑(R_e(z)+m(z)) = 0