Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Let S =\left\\{\theta \in[0,2 \pi]: 8^{2 \sin ^2 \theta}+8^{2 \cos ^2 \theta}=16\right\\} Then n(S)+θS(sec(π4+2θ)cosec(π4+2θ)) n ( S )+\displaystyle\sum_{\theta \in S }\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right) is equal to:

A

0

B

2-2

C

-4

D

12

Answer

-4

Explanation

Solution

82sin2θ+822sin2θ=168^{2\sin^2\theta}+8^{2-2\sin^2\theta}=16
y+64y=16y+\frac{64}{y}=16
y=8⇒y=8
sin2θ=12⇒\sin^2\theta=\frac{1}{2}
n(S)+θ  S1cos(π4+2θ)sin(π4+2θ)\therefore n(S)+\sum_{\theta\ ∈\ S}\frac{1}{\cos(\frac{\pi}{4}+2\theta)\sin(\frac{\pi}{4}+2\theta)}
=4+(2)×4=4+(-2)\times4
=4=-4
So, the correct option is (C) : -4.