Question
Mathematics Question on Trigonometry
Let S=\left\\{θ∈[0,2π]:8^{2sin^2θ}+8^{2cos^2θ}=16\right\\} .
Thenn(S)+∑θ∈S(sec(4π+2θ)cosec(4π+2θ))is equal to :
A
0
B
-2
C
-4
D
12
Answer
-4
Explanation
Solution
S=\left\\{θ∈[0,2π]:8^{2\sin^2θ}+8^{2\cos^2θ}=16\right\\}
Now apply AM≥GM for82sin2θ,82cos2θ
282sin2θ+82cos2θ≥(82sin2θ+2cos2θ)21
8≥8
⇒82sin2θ=82cos2θ
sin2θ=cos2θ
∴θ=4π,43π,45π,47π
n(S)+∑θ∈Ssec(4π+2θ)cosec(4π+2θ)
4+∑θ∈S2sin(4π+2θ)cos(4π+2θ)2
=4+∑θ∈Ssin(2π+4θ)2=4+2∑θ∈Scosec(2π+4θ)
=4+2[cosec(2π+π)+cosec(2π+3π)+.cosec(2π+5π)+cosec(2π+7π)]
=4+2[−cosec2π−cosec2π−cosec2π−cosec2π]
= 4– 2(4)
= 4 – 8
= – 4
So, the correct option is (C): -4