Solveeit Logo

Question

Question: Let \[S = \\{ \left( {\lambda ,\mu } \right) \in R \times R:f\left( t \right) = \left( {\left| \lamb...

Let S = \\{ \left( {\lambda ,\mu } \right) \in R \times R:f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right),t \in R, is a differentiable function \\}
Then SS is a subset of ?
A. R×[0,)R \times [0,\infty )
B. (,0)×R( - \infty ,0) \times R
C. [0,)×R[0,\infty ) \times R
D. R×(,0)R \times ( - \infty ,0)

Explanation

Solution

In the above question, we have given a function f(t)=(λetμ)sin(2t)f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right). Now, we will see the value of function at t>0t > 0 and t<0t < 0. Now, we have given that this function is differentiable, so, we will differentiate the function and we will see the value of the function at t>0t > 0 and t<0t < 0. Now, we will see that at t=0t = 0, the Right hand derivative is equal to the left hand derivative. Now, we will take the value of the differentiated function at t=0t = 0. Then on simplifying, we will get the range of λ,μ\left| \lambda \right|,\mu and then checking the options will provide us the correct answer.

Complete step-by-step answer:
In the above question, we have given an equation. That is S = \\{ \left( {\lambda ,\mu } \right) \in R \times R:f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right),t \in R,
Now, we have also given that f(t)=(λetμ)sin(2t)f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {2\left| t \right|} \right) is differentiable.
Now, we can say that
f(t)=(λetμ)sin(et)f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) \cdot \sin \left( {e\left| t \right|} \right) at t>0t > 0
f(t)=(λetμ)(sin(2t))f\left( t \right) = \left( {\left| \lambda \right|{e^{\left| { - t} \right|}} - \mu } \right) \cdot \left( { - \sin \left( {2\left| t \right|} \right)} \right) at t<0t < 0
Now, differentiating the function as it is given that the function is differentiable.
f(t)=((λet)sin2t+(λetμ)(2coset))f'\left( t \right) = \left( {\left( {\left| \lambda \right|{e^{\left| t \right|}}} \right)\sin 2t + \left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right)\left( {2\cos et} \right)} \right) at t>0t > 0
f(t)=((λet)sin2t+(λetμ)(cos2t))f'\left( t \right) = \left( {\left( {\left| \lambda \right|{e^{ - t}}} \right)\sin 2t + \left( {\left| \lambda \right|{e^{ - t}} - \mu } \right)\left( { - \cos 2t} \right)} \right) at t<0t < 0
Now, we now that f(t)f\left( t \right) is differentiable,
Therefore, Left Hand Derivative is equal to Right Hand Derivative.

((λ)sin2(0)+(λe0μ)(2cos))=((λe0)sin+(λe0μ)(cos0)) 0+(λμ)2=02(λeμ) 4(λμ)=0 λ=μ  \Rightarrow \left( {\left( {\left| \lambda \right|} \right)\sin 2\left( 0 \right) + \left( {\left| \lambda \right|{e^0} - \mu } \right)\left( {2\cos \infty } \right)} \right) = \left( {\left( {\left| \lambda \right|{e^{ - 0}}} \right)\sin \infty + \left( {\left| \lambda \right|{e^{ - 0}} - \mu } \right)\left( { - \cos 0} \right)} \right) \\\ \Rightarrow 0 + \left( {\left| \lambda \right| - \mu } \right)2 = 0 - 2\left( {\left| \lambda \right|e - \mu } \right) \\\ \Rightarrow 4\left( {\left| \lambda \right| - \mu } \right) = 0 \\\ \Rightarrow \left| \lambda \right| = \mu \\\

Now, we know that,
S = \left( {\lambda ,\mu } \right) = \left\\{ {\lambda \in R,\mu \in \left( {0,\infty } \right)} \right\\}
Now, 0λ<0 \leqslant \lambda < \infty and 0<μ<0 < \mu < \infty
Now, by checking the options, we will get a correct option,
So, we get that Set SS is subset of R×[0,)R \times [0,\infty )

Hence, the correct option for this question is A.

Note:
We can solve the above question with another approach. As we know that sin(2t)\sin \left( {2\left| t \right|} \right) is not differentiable at \infty points. But in the problem the given function is differentiable. So, to have this function is differentiable, we need to make (λetμ)\left( {\left| \lambda \right|{e^{\left| t \right|}} - \mu } \right) equal to zero. Now, putting this equal to zero, will provide us the range of the et{e^{\left| t \right|}}. Hence, we will get a correct option for our answer.