Solveeit Logo

Question

Question: Let \(S\left( \alpha \right)=\left\\{ \left( x,y \right):{{y}^{2}}\le x,0\le x\le \alpha \right\\}\)...

Let S\left( \alpha \right)=\left\\{ \left( x,y \right):{{y}^{2}}\le x,0\le x\le \alpha \right\\} and A(α)A\left( \alpha \right)is area of the region S(α)S\left( \alpha \right). If for a λ,0<λ<4,A(λ):A(4)=2:5,\lambda ,0<\lambda <4,A\left( \lambda \right):A\left( 4 \right)=2:5, then λ\lambda equals
A. 2(425)132{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}
B. 4(25)134{{\left( \dfrac{2}{5} \right)}^{\dfrac{1}{3}}}
C. 4(425)134{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}
D. 2(25)132{{\left( \dfrac{2}{5} \right)}^{\dfrac{1}{3}}}

Explanation

Solution

First we will plot the graph and identify the region for A(λ)A\left( \lambda \right) then we will write the given parabolic equation in form of x and integrate it from x=0 to x=λx=0\text{ to }x=\lambda , after integrating we will simply apply the final condition given in the question and then obtain the value of λ\lambda .

Complete step by step answer:
Given that, S\left( \alpha \right)=\left\\{ \left( x,y \right):{{y}^{2}}\le x,0\le x\le \alpha \right\\} and A(α)A\left( \alpha \right)is area of the region S(α)S\left( \alpha \right):

Now, We see that A(λ)A\left( \lambda \right) is the region bounded by x=y2x={{y}^{2}} from x=0 to x=λx=0\text{ to }x=\lambda , so to find A(λ)A\left( \lambda \right) we will integrate the parabolic equation from 00 to λ\lambda :
To start the integration first write the equation in form of x such that: x=y2y=xx={{y}^{2}}\Rightarrow y=\sqrt{x}
Now we will integrate the following, to integrate it we will use the power rule that is : f(x)ndx=f(x)n+1n+1\int{f{{(x)}^{n}}dx=\dfrac{f{{(x)}^{n+1}}}{n+1}}
So:
A(λ)=20λxdx2[(x12+1)(12+1)]λ0 2[(x32)(32)]λ0 \begin{aligned} & A\left( \lambda \right)=2\int\limits_{0}^{\lambda }{\sqrt{x}}dx\Rightarrow 2{{\left[ \dfrac{\left( {{x}^{\dfrac{1}{2}+1}} \right)}{\left( \dfrac{1}{2}+1 \right)} \right]}^{\lambda }}_{0} \\\ & \Rightarrow 2{{\left[ \dfrac{\left( {{x}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]}^{\lambda }}_{0} \\\ \end{aligned}
Now we will apply the upper limit and the lower limit into the obtained integral we get:
2[(x32)(32)]λ02[(λ32)(32)]2[(032)(32)]43λ322{{\left[ \dfrac{\left( {{x}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]}^{\lambda }}_{0}\Rightarrow 2\left[ \dfrac{\left( {{\lambda }^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]-2\left[ \dfrac{\left( {{0}^{\dfrac{3}{2}}} \right)}{\left( \dfrac{3}{2} \right)} \right]\Rightarrow \dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}}
Therefore , A(λ)=43λ32 .......Equation 1.A\left( \lambda \right)=\dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}}\text{ }.......\text{Equation 1}\text{.}
Now it is given in the question that: A(λ)A(4)=25,(0<λ<4)\dfrac{A(\lambda )}{A(4)}=\dfrac{2}{5},(0<\lambda <4)
We will put the value of A(λ)A\left( \lambda \right) from equation 1 into the above mentioned equation:

& \dfrac{A(\lambda )}{A(4)}=\dfrac{2}{5} \\\ & \Rightarrow \dfrac{\left( \dfrac{4}{3}{{\lambda }^{\dfrac{3}{2}}} \right)}{\left( \dfrac{4}{3}{{4}^{\dfrac{3}{2}}} \right)}=\dfrac{2}{5}\Rightarrow \dfrac{{{\lambda }^{\dfrac{3}{2}}}}{{{4}^{\dfrac{3}{2}}}}=\dfrac{2}{5} \\\ \end{aligned}$$ Now we will square both the sides: $$\begin{aligned} & \Rightarrow {{\left( \dfrac{{{\lambda }^{\dfrac{3}{2}}}}{{{4}^{\dfrac{3}{2}}}} \right)}^{2}}={{\left( \dfrac{2}{5} \right)}^{2}} \\\ & \Rightarrow {{\left( \dfrac{\lambda }{4} \right)}^{3}}={{\left( \dfrac{2}{5} \right)}^{2}}\Rightarrow {{\left( \dfrac{\lambda }{4} \right)}^{3}}=\left( \dfrac{4}{25} \right) \\\ \end{aligned}$$ Again we will be taking cube roots on both sides: $$\Rightarrow \left( \dfrac{\lambda }{4} \right)={{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}\Rightarrow \lambda =4{{\left( \dfrac{4}{25} \right)}^{\dfrac{1}{3}}}$$ Therefore the correct answer is option C.** **Note:** Remember that a region bounded from point $a$ to $b$ means that integration will be done from the lower limit $a$ and the upper limit $b$ . Also take care when you take the cube roots while finding the final value of $\lambda $, we have written the cube roots as raising the fraction or number to the power of $\dfrac{1}{3}$ . Students can make the mistake while solving the terms raised with power so one must learn the properties of powers.