Question
Mathematics Question on Trigonometric Equations
Let S=\left\\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\\}
Then,
S = \left\\{\frac{π}{12}\right\\}
S = \left\\{\frac{2π}{3}\right\\}
∑θ∈Sθ=2π
∑θ∈Sθ=43π
∑θ∈Sθ=2π
Solution
The correct answer is (C) : ∑θ∈Sθ=2π
S=\left\\{0∈(0,\frac{π}{2}) : \sum^{9}_{m=1} \sec(θ+(m-1)\frac{π}{6})\sec(θ+\frac{mπ}{6}) = -\frac{8}{\sqrt3}\right\\}
∑m=19cos(θ+(m−1)6π)1cos(θ+m6π)
sin(6π)1∑m=19cos(θ+(m−1)6π)cos(θ+m6π)sin[(θ+m6π)−(θ+(m−1)6π)]
2∑m=19[tan(θ+m6π)−tan(θ+(m−1)6π)]
Now, m=1, 2[tan(θ+6π)−tan(θ)]
m=2 2[tan(θ+62π)−tan(θ+6π)]
.
.
.
m=9 2[tan(θ+69π)−tan(θ+86π)]
∴=2[tan(θ+23π)−tanθ]=3−8
=−2[cotθ+tanθ]=3−8
=−2sinθcosθ2×2=3−8
=2sinθ1=32
⇒sin2θ=23
2θ=3π,
2θ=32π
θ=6π
θ=3π
∑θi=6π+3π
=2π