Solveeit Logo

Question

Mathematics Question on Sequence and series

Let S=419+44192+444193+.....S= \frac{4}{19} +\frac{44}{19^{2}} + \frac{444}{19^{3}} + .....\infty. Then SS is equal to

A

3881\frac{38}{81}

B

419\frac{4}{19}

C

36171\frac{36}{171}

D

119\frac{1}{19}

Answer

3881\frac{38}{81}

Explanation

Solution

S=419+44192+444193+.......(i)S = \frac{4}{19} +\frac{44}{19^{2} } +\frac{444}{19^{3}} + ....\infty \quad...\left(i\right) S19=4192+44193+.......(ii) \Rightarrow \frac{S}{19}= \frac{4}{19^{2}} +\frac{44}{19^{3}} + .... \infty\quad...\left(ii\right) Subtracting (ii)\left(ii\right) from (i)\left(i\right), we get S1819=419+40192+400193+..... S \frac{18}{19}= \frac{4}{19}+\frac{40}{19^{2}} +\frac{400}{19^{3}}+ .....\infty =419[1+1019+(1019)2+.....] = \frac{4}{19}\left[1+\frac{10}{19} + \left(\frac{10}{19}\right)^{2}+ .....\infty\right] =419[111019]=49 = \frac{4}{19} \left[\frac{1}{1-\frac{10}{19}}\right] = \frac{4}{9} S=76162 \Rightarrow S = \frac{76}{162} =3881 = \frac{38}{81}