Question
Mathematics Question on Integrals of Some Particular Functions
Let S=12nC0+222nC1+323nC2+......+n+12n+1nCn. Then S equals
A
n+12n+1−1
B
n+13n+1−1
C
n3n−1
D
n2n−1
Answer
n+13n+1−1
Explanation
Solution
We know that
(1+x)n=nC0+xnC1+x2nC2+…+xnnCn
On integrating both sides from 0 to 2 , we get
[n+1(1+x)n+1]02
=[xnC0+2x2nC1+3x3nC2+…+n+1xn+1nCn]02
⇒n+1(3)n+1−n+11=2nC0+222nC1+323nC2+…+n+12n+1nCn−0
⇒12nC0+222nC1+323nC2+…+n+12n+1nCn
=n+13n+1−1