Solveeit Logo

Question

Mathematics Question on Operations on Sets

Let S = {E1, E2, ……………., E8} be a sample space of a random experiment such that P(En)=n36P(E_n) = \frac{n}{36} for every n = 1, 2, ………, 8. Then the number of elements in the setAS:P(A)45\\{ A \subseteq S : P(A) \geq \frac{4}{5} \\} is_________.

Answer

Here P(En)=n36P(E_n) = \frac{n}{36} for n = 1, 2, 3, ………, 8
Here,
P(A)=Any possible sum of (1,2,3,,8)(=asay)36P(A) = \frac{\text{Any possible sum of }(1,2,3,\ldots,8) \, (= a \, \text{say})}{36}
a3645∵ \frac{a}{36}≥\frac{4}{5}
a29∴ a ≥ 29
If one of the number from {1, 2, …., 8} is left then total a29a ≥ 29 by 3 ways.
Similarly by leaving terms more 2 or 3 we get 16 more combinations.
∴ Total number of different set A possible is 16+3=1916+3=19