Solveeit Logo

Question

Mathematics Question on Sequence and series

Let SS denote the sum of the infinite series 1+82!+213!+404!+655!.......1+\frac{8}{2!}+\frac{21}{3!}+\frac{40}{4!}+\frac{65}{5!} ....... . Then

A

S<8S < 8

B

S>12S > 12

C

8<S<128 < S < 12

D

S=8S = 8

Answer

8<S<128 < S < 12

Explanation

Solution

Let S=1+82!+213!+404!+655!+S=1+\frac{8}{2 !}+\frac{21}{3 !}+\frac{40}{4 !}+\frac{65}{5 !}+\ldots Again, let S1=1+8+21+40+65++TnS_{1}=1+8+21+40+65+\ldots+T_{n} and S1=+1+8+21+40++Tn0=1+7+13+19+25+Tn\frac{S_{1}=+1+8+21+40+\ldots+T_{n}}{0=1+7+13+19+25+\ldots-T_{n}} Tn=1+7+13+19+25++nT_{n}=1+7+13+19+25+\ldots+n terms =n2[2(1)+(n1)6]=\frac{n}{2}[2(1)+(n-1) 6] =n[1+3(n1)]=n(3n2)=n[1+3(n-1)]=n(3 n-2) S=n(3n2)n!\therefore S=\sum \frac{n(3 n-2)}{n !} =3n2(n1)!=\sum \frac{3 n-2}{(n-1) !} =3n3+1(n1)!=\sum \frac{3 n-3+1}{(n-1) !} S=3(n2)!+1(n1)!S=\sum \frac{3}{(n-2) !}+\sum \frac{1}{(n-1) !} =3e+e[e=1+11!+12!+]=3 e+e \,\,\,\,\left[\because e=1+\frac{1}{1 !}+\frac{1}{2 !}+\ldots\right] =4e=4 e We know 2<e<32 < e < 3 8<4e<12\therefore 8 < 4 e < 12 8<S<12 \Rightarrow 8 < S < 12