Question
Mathematics Question on Sequence and series
Let S denote the sum of the infinite series 1+2!8+3!21+4!40+5!65........ Then
A
S<8
B
S>12
C
8<S<12
D
S=8
Answer
8<S<12
Explanation
Solution
Let S=1+2!8+3!21+4!40+5!65+… Again, let S1=1+8+21+40+65+…+Tn and 0=1+7+13+19+25+…−TnS1=+1+8+21+40+…+Tn Tn=1+7+13+19+25+…+n terms =2n[2(1)+(n−1)6] =n[1+3(n−1)]=n(3n−2) ∴S=∑n!n(3n−2) =∑(n−1)!3n−2 =∑(n−1)!3n−3+1 S=∑(n−2)!3+∑(n−1)!1 =3e+e[∵e=1+1!1+2!1+…] =4e We know 2<e<3 ∴8<4e<12 ⇒8<S<12