Solveeit Logo

Question

Question: Let $S = \begin{Bmatrix} m \in \mathbb{Z}: A^{m^2} + A^m = 3I - A^{-6} \end{Bmatrix}$, where $A = \b...

Let S={mZ:Am2+Am=3IA6}S = \begin{Bmatrix} m \in \mathbb{Z}: A^{m^2} + A^m = 3I - A^{-6} \end{Bmatrix}, where A=[2110]A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}. Then n(S) is equal to ______.

Answer

2

Explanation

Solution

Solution:

Given

A=[2110]andS={mZ:Am2+Am=3IA6}.A=\begin{bmatrix}2&-1\\1&0\end{bmatrix} \quad\text{and}\quad S=\{\,m\in\mathbb{Z} : A^{m^2}+A^m=3I-A^{-6}\}.

Step 1: Notice that the characteristic equation of AA is

det(AλI)=(λ1)2=0,\det(A-\lambda I)=(\lambda-1)^2=0,

so AA has a single eigenvalue λ=1\lambda=1 with algebraic multiplicity 2. Hence, AA can be written as

A=I+N,with N=AI and N2=0.A=I+N,\quad\text{with } N = A-I \text{ and } N^2=0.

Step 2: For any integer kk,

Ak=(I+N)k=I+kN(using the binomial expansion and N2=0).A^k=(I+N)^k=I+kN \quad \text{(using the binomial expansion and } N^2=0\text{)}.

Step 3: Applying this to our equation:

Am2+Am=[I+m2N]+[I+mN]=2I+(m2+m)N.A^{m^2} + A^m = \bigl[I + m^2N\bigr] + \bigl[I + mN\bigr] = 2I + (m^2+m)N.

Similarly,

A6=I+(6)N=I6N,A^{-6}=I+(-6)N=I-6N,

so

3IA6=3I(I6N)=2I+6N.3I-A^{-6}=3I - (I-6N)=2I+6N.

Step 4: Equate the two expressions:

2I+(m2+m)N=2I+6N.2I+(m^2+m)N = 2I+6N.

Comparing coefficients of NN (and noting N0N \neq 0), we have:

m2+m=6.m^2+m =6.

This simplifies to:

m2+m6=0(m+3)(m2)=0.m^2 + m - 6 =0 \quad \Rightarrow \quad (m+3)(m-2)=0.

Thus, the solutions are m=3m=-3 and m=2m=2.

Since S={3,2}S=\{-3,\,2\}, the number of elements is:

n(S)=2.n(S)=2.

Minimal Explanation:

Write A=I+NA = I+N with N2=0N^2 = 0. Then Ak=I+kNA^k = I+kN. Substitute in the equation to get 2I+(m2+m)N=2I+6N2I+(m^2+m)N = 2I+6N, which implies m2+m=6m^2+m = 6. Solve to obtain m=3,2m=-3,2 and hence n(S)=2n(S)=2.