Solveeit Logo

Question

Mathematics Question on cartesian products of sets

Let S=(10 ab),a,b,(1,2,3,.....100)S ={ (\begin{matrix} -1 & 0 \\\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)} and
let Tn=AS:An(n+1)=I.T_n = {A ∈ S : A^{n(n + 1)} = I}.
Then the number of elements in n=1100\bigcap_{n=1}^{100} TnT_n is

Answer

The correct answer is 100
S=(10 ab),a,b,(1,2,3,.....100)S ={ (\begin{matrix} -1 & 0 \\\ a & b \end{matrix}), a,b, ∈(1,2,3,.....100)}
A=∴ A = (10 ab)(\begin{matrix} -1 & 0 \\\ a & b \end{matrix})
then even powers of A as
A(10 01)A(\begin{matrix} 1 & 0 \\\ 0 & 1 \end{matrix})
if b = 1 and a ∈ {1,….., 100}
Here, n(n + 1) is always even.
T1,T2,T3T_1, T_2, T_3, …, TnT_n are all I for b = 1 and each value of a.
n=1100\bigcap_{n=1}^{100} Tn=100T_n = 100