Solveeit Logo

Question

Mathematics Question on Sequences and Series

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn.

Answer

Let the G.P. be a, ar, ar2 , ar3 , … arn-1…
According to the given information,
S=a(rn1)r1S =\frac{ a(r^n - 1) }{ r - 1}
P=an×r1+2+...+n1P = a^n × r^{1 + 2 + ... + n - 1}
=anrn(n1)2= a^n r^{\frac{n(n - 1) }{ 2} } [ ∵ Sum of first n natural numbers is n (n+1)2\frac{(n + 1) }{ 2} ]
R=1a+1ar+...+1arn1R = \frac{1 }{ a} + \frac{1 }{ ar} + ... + \frac{1 }{ ar ^{n - 1}}
=rn1+rn2+....r+1arn1= \frac{r^{ n - 1} + r ^{n - 2} + .... r + 1}{ar ^{n - 1}}
=1(rn1)(r1)×1arn1=\frac{ 1(r^ n - 1) }{ (r - 1) }× \frac{1 }{ ar ^n - 1 } [ ∵ 1, r, ...r n - 1 forms a G.P.]
=rn1arn1(r1)=\frac{r^{ n - 1 }}{ ar ^{n - 1}(r - 1)}
P2Rn=a2nrn(n1)(rn1)nanrn(n1)(r1)n∴ \,P^2R^n = a^{2n} r^{n(n - 1)}\frac{(r^n-1)^n }{a^nr^{n(n-1)}(r - 1)^n}
=an(rn1)n(r1)n= \frac{a^n(r^n - 1)^n }{(r - 1)^n}
=[a(rn1)(r1)]n= \frac{[a(r^n - 1) }{ (r - 1)]}^n
=Sn= S^n
Hence, P2 Rn = Sn.