Solveeit Logo

Question

Mathematics Question on Quadratic Equations

Let SS be the set of positive integral values of aa for which ax2+2(a+1)x+9a+4x28x+32<0,xR.\frac{a x^2 + 2(a + 1)x + 9a + 4}{x^2 - 8x + 32} < 0, \quad \forall x \in \mathbb{R}. Then, the number of elements in SS is:

A

1

B

0

C

\infty

D

3

Answer

0

Explanation

Solution

Consider the inequality:

ax2+2(a+1)x+9a+4<0xRax^2 + 2(a + 1)x + 9a + 4 < 0 \quad \forall x \in \mathbb{R}

For the quadratic to be negative for all values of xx, the coefficient of x2x^2 must be negative:

a<0a < 0

Since we are looking for positive integral values of aa, no such values exist.