Solveeit Logo

Question

Mathematics Question on Tangents and Normals

Let S be the set of all the natural numbers, for which the line
xa+yb=2\frac{x}{a}+\frac{y}{b}=2
is a tangent to the curve
(xa)n+(yb)n=2(\frac{x}{a})^n+(\frac{y}{b})^n=2
at the point (a, b), ab ≠ 0. Then :

A

S=Φ

B

n(S)=1

C

S=\left\\{2k:k∈N\right\\}

D

S=NS=N

Answer

S=NS=N

Explanation

Solution

The correct answer is (D) : S=N
(xa)n+(yb)n=2(\frac{x}{a})^n+(\frac{y}{b})^n=2
na(xa)n1+nb(yb)n1dydx=0⇒\frac{n}{a}(\frac{x}{a})^{n-1} +\frac{n}{b}(\frac{y}{b})^{n-1}\frac{dy}{dx} =0
dydx=ba(bxay)n1⇒\frac{dy}{dx}=-\frac{b}{a}(\frac{bx}{ay})^{n-1}
dydx(a,b)=ba\frac{dy}{dx_{(a,b)}}=-\frac{b}{a}
So line always touches the given curve.