Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let SS be the reflection of a point QQ with respect to the plane given by r=(t+p)i^+tj^+(1+p)k^\vec{r}=-(t+p) \hat{ i }+t \hat{ j }+(1+p) \hat{ k } where t,pt, p are real parameters and i^,j^,k^\hat{ i }, \hat{ j }, \hat{ k } are the unit vectors along the three positive coordinate axes If the position vectors of QQ and SS are 10i^+15j^+20k^10 \hat{ i }+15 \hat{ j }+20 \hat{ k } and αi^+βj^+γk^\alpha \hat{ i }+\beta \hat{ j }+\gamma \hat{ k } respectively, then which of the following is/are TRUE ?

A

3(α+β)=1013(\alpha+\beta)=-101

B

3(β+γ)=713(\beta+\gamma)=-71

C

3(γ+α)=863(\gamma+\alpha)=-86

D

3(α+β+γ)=1213(\alpha+\beta+\gamma)=-121

Answer

3(α+β)=1013(\alpha+\beta)=-101

Explanation

Solution

(A) 3(α+β)=1013(\alpha+\beta)=-101
(B) 3(β+γ)=713(\beta+\gamma)=-71
(C) 3(γ+α)=863(\gamma+\alpha)=-86