Solveeit Logo

Question

Question: Let \(S\) and \(S'\) be two foci of the ellipse \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}...

Let SS and SS' be two foci of the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 . If a circle described on SSSS' as diameter intersects the ellipse in real and distinct points, then the eccentricity e of the ellipse satisfies which of the following?
A) e=12e = \dfrac{1}{{\sqrt 2 }}
B) e(12,1)e \in \left( {\dfrac{1}{{\sqrt 2 }},1} \right)
C) e(0,12)e \in \left( {0,\dfrac{1}{{\sqrt 2 }}} \right)
D) None of these

Explanation

Solution

The foci of an ellipse with the equation x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1 are S(ae,0)S\left( {ae,0} \right) and S(ae,0)S'\left( { - ae,0} \right) . Using these values find the equation of the circle with diameter as SSSS' . Further, find the value of xx and yy . From these values, the value or limit of eccentricity can be calculated.

Complete step by step answer:
Given to us an ellipse with the equation x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1
We know that the foci of this ellipse are S(ae,0)S\left( {ae,0} \right) and S(ae,0)S'\left( { - ae,0} \right)
Now, we have been given that SSSS' is the diameter of the circle that intersects the ellipse. We can find the equation for this circle by using the formula (xx1)(xx2)+(yy1)(yy2)=0\left( {x - {x_1}} \right)\left( {x - {x_2}} \right) + \left( {y - {y_1}} \right)\left( {y - {y_2}} \right) = 0
So the circle would be (xae)(x+ae)+(y0)(y0)=0\left( {x - ae} \right)\left( {x + ae} \right) + \left( {y - 0} \right)\left( {y - 0} \right) = 0
By solving, we get x2(ae)2+y2=0{x^2} - {\left( {ae} \right)^2} + {y^2} = 0
From this we get y2=a2e2x2{y^2} = {a^2}{e^2} - {x^2}

Let us substitute this value in the equation of ellipse to find the value of xx
x2a2+a2e2x2b2=1x2a2+a2e2b2x2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{a^2}{e^2} - {x^2}}}{{{b^2}}} = 1 \Rightarrow \dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{a^2}{e^2}}}{{{b^2}}} - \dfrac{{{x^2}}}{{{b^2}}} = 1
By taking x2{x^2} common from this equation, we get x2(1a21b2)+a2e2b2=1x2(1a21b2)=1a2e2b2{x^2}\left( {\dfrac{1}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) + \dfrac{{{a^2}{e^2}}}{{{b^2}}} = 1 \Rightarrow {x^2}\left( {\dfrac{1}{{{a^2}}} - \dfrac{1}{{{b^2}}}} \right) = 1 - \dfrac{{{a^2}{e^2}}}{{{b^2}}}
We solve this as x2(b2a2a2b2)=b2a2e2b2x2(b2a2a2)=(b2a2e2){x^2}\left( {\dfrac{{{b^2} - {a^2}}}{{{a^2}{b^2}}}} \right) = \dfrac{{{b^2} - {a^2}{e^2}}}{{{b^2}}} \Rightarrow {x^2}\left( {\dfrac{{{b^2} - {a^2}}}{{{a^2}}}} \right) = \left( {{b^2} - {a^2}{e^2}} \right)
This can be written as x2(b2a21)=a2(b2a2e2){x^2}\left( {\dfrac{{{b^2}}}{{{a^2}}} - 1} \right) = {a^2}\left( {\dfrac{{{b^2}}}{{{a^2}}} - {e^2}} \right)
We know that ba=1e2b2a2=1e2\dfrac{b}{a} = \sqrt {1 - {e^2}} \Rightarrow \dfrac{{{b^2}}}{{{a^2}}} = 1 - {e^2}

By substituting this value in the above equation, we get x2(1e21)=a2(1e2e2)x2e2=a2(12e2){x^2}\left( {1 - {e^2} - 1} \right) = {a^2}\left( {1 - {e^2} - {e^2}} \right) \Rightarrow - {x^2}{e^2} = {a^2}\left( {1 - 2{e^2}} \right)
Further solving this, x2=a2e2(2e21){x^2} = \dfrac{{{a^2}}}{{{e^2}}}\left( {2{e^2} - 1} \right)
x=±ae2e21x = \pm \dfrac{a}{e}\sqrt {2{e^2} - 1}
For the value of xx to be real and distinct 2e21>02{e^2} - 1 > 0
e2>12e>±12{e^2} > \dfrac{1}{2} \Rightarrow e > \pm \dfrac{1}{{\sqrt 2 }}
But the value of ee lies between (0,1)\left( {0,1} \right)
Therefore e(12,1)e \in \left( {\dfrac{1}{{\sqrt 2 }},1} \right) i.e. option B.

Note: Note that the circle intersects the ellipse at real and distinct points so the values of xx and yy should be real and distinct. The limit of eccentricity for any ellipse is (0,1)\left( {0,1} \right) . The intersection of this limit and the limit calculated will be the resultant limit.