Solveeit Logo

Question

Mathematics Question on Conic sections

Let S and S' be the foci of the ellipse and B be any one of the extremities of its minor axis. If 'S'BS is a right angled triangle with right angle at B and area (Δ\DeltaS'BS) = 8 s units, then the length of a latus rectum of the ellipse is :

A

222\sqrt{2}

B

2

C

4

D

42\sqrt{2}

Answer

4

Explanation

Solution

mSB.mSB=1m_{SB} . m_{SB} \, = \, -1
b2=a2e2...(i)b^2 \, = \, a^2 e^2 \, \, \, \, \, ...(i)
12SB.SB=8\frac{1}{2}S'B . SB = 8
SB.SB=16S'B. SB = 16
a2c2+b2=16.........(ii)a^2c^2 + b^2 \, = \, 16 \, .........(ii)
b2=a2(1e2).......(iii)b^2 \, \, = \, \, a^2 \, \, \, (1 - e^2) \, .......(iii)
using (i),(ii), (iii) a = 4
b=22\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, b = 2\sqrt{2}
e=12\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, e = \frac{1}{\sqrt{2}}
(L.R)=2b2a=4\therefore \, \, \ell (L.R) \, \, = \frac{2b^2}{a} \, = \, 4