Solveeit Logo

Question

Mathematics Question on permutations and combinations

Let S1=j=110j(j1)10Cj,S2=j=110j10CjS_{1} = \sum\limits^{10}_{j = 1}j\left(j-1\right) ^{10}C_{j} , S_{2} = \sum\limits^{10}_{j = 1}j ^{10}C_{j} and S3=j=110j210Cj.S_{3} =\sum\limits^{10}_{j = 1}j^{2} \,^{10}C_{j}. S3=55×S_3 = 55 \times 2^9$$ S1=90×28S_1 = 90 \times 2^8 and S2=10×28S_2 = 10 \times 2^8.

A

Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1

B

Statement-1 is true, Statement-2 is false

C

Statement-1 is false, Statement-2 is true

D

Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement - 1

Answer

Statement-1 is true, Statement-2 is false

Explanation

Solution

S1=j=110j(j1)10!j(j1)(j2)!(10j)=90j=2108!(j2)(8(j2))!=9028.S_{1} = \sum\limits^{10}_{j = 1}j\left(j-1\right) \frac{10!}{j\left(j-1\right)\left(j-2\right)!\left(10-j\right)} = 90 \sum\limits^{10}_{j = 2}\frac{8!}{\left(j-2\right)\left(8-\left(j-2\right)\right)!} = 90\cdot2^{8}. S2=j=110j10!j(j1)!(9(j1))!=j=1109!(j1)!(9(j1))!=1029.S_{2} = \sum\limits^{10}_{j = 1}j \frac{10!}{j\left(j-1\right)!\left(9-\left(j-1\right)\right)!} = \sum\limits^{10}_{j = 1} \frac{9!}{\left(j-1\right)!\left(9-\left(j-1\right)\right)!} = 10\cdot2^{9}. S3=j=110[j(j1)+j]10!j!(10j)=j=110j(j1)10Cj=j=110j10Cj=90.28+10.29S_{3} = \sum\limits^{10}_{j = 1} \left[j \left(j-1\right)+j\right] \frac{10!}{j!\left(10-j\right)} = \sum\limits^{10}_{j = 1}j\left(j-1\right) \,^{10}C_{j} = \sum\limits^{10}_{j = 1} j\,^{10}C_{j} = 90.2^{8}+10.2^{9} =90.28+20.28=110.28=55.29.= 90 . 2^{8} + 20 . 2^{8} = 110 . 2^{8} = 55 . 2^{9}.