Solveeit Logo

Question

Mathematics Question on Determinants

Let S_1=\left\\{z_1 \in C:\left|z_1-3\right|=\frac{1}{2}\right\\} and S _2=\left\\{ z _2 \in C :\left| z _2-\right| z _2+1||=\left| z _2+\right| z _2-1||\right\\} Then, for z1S1z_1 \in S_1 and z2S2z_2 \in S_2, the least value of z2z1\left|z_2-z_1\right| is :

A

0

B

12\frac{1}{2}

C

32\frac{3}{2}

D

52\frac{5}{2}

Answer

32\frac{3}{2}

Explanation

Solution

The correct option is (C): 32\frac{3}{2}