Question
Mathematics Question on integral
Let S=(−1,∞) and f:S→R be defined as f(x)=∫−1x(et−1)11(2t−1)5(t−2)7(t−3)12(2t−10)61dt Let p= Sum of squares of the values of x, where f(x) attains local maxima on S. And q= Sum of the values of x, where f(x) attains local minima on S. Then, the value of p2+2q is ______
Answer
Consider the derivative:
f′(x)=(ex−1)11(2x−1)9(x−2)7(x−3)12(2x−10)61
Analyzing the sign changes, we observe local minima at:
x=21,x=5
And local maxima at:
x=0,x=2
Calculating values:
p=02+22=4,q=21+5=211
Therefore:
p2+2q=16+11=27