Solveeit Logo

Question

Mathematics Question on integral

Let S=(1,)S = (-1, \infty) and f:SRf : S \rightarrow \mathbb{R} be defined as f(x)=1x(et1)11(2t1)5(t2)7(t3)12(2t10)61dtf(x) = \int_{-1}^{x} (e^t - 1)^{11} (2t - 1)^5 (t - 2)^7 (t - 3)^{12} (2t - 10)^{61} \, dt Let p=p = Sum of squares of the values of xx, where f(x)f(x) attains local maxima on SS. And q=q = Sum of the values of xx, where f(x)f(x) attains local minima on SS. Then, the value of p2+2qp^2 + 2q is ______

Answer

Consider the derivative:

f(x)=(ex1)11(2x1)9(x2)7(x3)12(2x10)61f'(x) = (e^{x-1})^{11} (2x - 1)^9 (x - 2)^7 (x - 3)^{12} (2x - 10)^{61}

Analyzing the sign changes, we observe local minima at:

x=12,x=5x = \frac{1}{2}, \, x = 5

And local maxima at:

x=0,x=2x = 0, \, x = 2

Calculating values:

p=02+22=4,q=12+5=112p = 0^2 + 2^2 = 4, \quad q = \frac{1}{2} + 5 = \frac{11}{2}

Therefore:

p2+2q=16+11=27p^2 + 2q = 16 + 11 = 27