Solveeit Logo

Question

Mathematics Question on Sequence and series

Let S1S_{1} be a square of side 5cm5\,cm. Another square S2S_{2} is drawn by joining the midpoints of the sides of S1S_{1} Square S3S_{3} is drawn by joining the midpoints of the sides of S2S_{2} and so on. Then (area of S1S_{1} + area of S2S_{2} + area of S3S_{3} +++\ldots+ area of S10S_{10}) =

A

25(11210)Cm225\left(1-\frac{1}{2^{10}}\right) Cm^{2}

B

50(11210)Cm250\left(1-\frac{1}{2^{10}}\right)Cm^{2}

C

2(11210)Cm22\left(1-\frac{1}{2^{10}}\right)Cm^{2}

D

11210Cm21-\frac{1}{2^{10}}Cm^{2}

Answer

50(11210)Cm250\left(1-\frac{1}{2^{10}}\right)Cm^{2}

Explanation

Solution

Area of S1=25cm2S_{1}=25 cm ^{2}
Area of S2=252cm2S_{2}=\frac{25}{2}\,cm ^{2}
Area of S3=254cm2S_{3}=\frac{25}{4} \,cm ^{2} and so on
Total area =25+252+254+=25+\frac{25}{2}+\frac{25}{4}+\ldots upto 10 terms
=25[1+12+14+]=25\left[1+\frac{1}{2}+\frac{1}{4}+\ldots\right]
=25[1(12)10112]=25\left[\frac{1-\left(\frac{1}{2}\right)^{10}}{1-\frac{1}{2}}\right]
=50(11210)cm2=50\left(1-\frac{1}{2^{10}}\right) cm ^{2}