Solveeit Logo

Question

Mathematics Question on Relations and functions

Let S=1,2,3,4,5,6,7,8,9,10S = \\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\\}. Define f:SSf : S → S as
f(n)={2n,if n1,2,3,4,5 2n11,if n6,7,8,9,10f(n) = \begin{cases} 2n, & \text{if } n \in \\{1,2,3,4,5\\} \\\ 2n-11, & \text{if } n \in \\{6,7,8,9,10\\} \end{cases}
Let g:SSg : S → S be a function such that.
(fg)(n)={n+1,if n is odd n1,if n is even(f \circ g)(n) = \begin{cases} n + 1, & \text{if } n \text{ is odd} \\\ n - 1, & \text{if } n \text{ is even} \end{cases}
Then g(10)(g(1)+g(2)+g(3)+g(4)+g(5))g(10) \cdot (g(1) + g(2) + g(3) + g(4) + g(5)) is equal to __________.

Answer

∵$$f(n) = \begin{cases} 2n, & \text{if } n \in \\{1,2,3,4,5\\} \\\ 2n-11, & \text{if } n \in \\{6,7,8,9,10\\} \end{cases}
f(1)=2,f(2)=4,,f(5)=10∴ f(1) = 2, f(2) = 4, … , f(5) = 10
and f(6)=1,f(7)=3,f(8)=5,,f(10)=9f(6) = 1, f(7) = 3, f(8) = 5, … , f(10) = 9
Now,
f(g(n))={n+1,if n is odd n1,if n is evenf(g(n)) = \begin{cases} n + 1, & \text{if } n \text{ is odd} \\\ n - 1, & \text{if } n \text{ is even} \end{cases}
f(g(10))=9    g(10)=10∴ f(g(10)) = 9 \implies g(10) = 10
f(g(1))=2    g(1)=1f(g(1)) = 2 \implies g(1) = 1
f(g(2))=1    g(2)=6f(g(2)) = 1 \implies g(2) = 6
f(g(3))=4    g(3)=2f(g(3)) = 4 \implies g(3) = 2
f(g(4))=3    g(4)=7f(g(4)) = 3 \implies g(4) = 7
f(g(5))=6    g(5)=3f(g(5)) = 6 \implies g(5) = 3
g(10)(g(1)+g(2)+g(3)+g(4)+g(5))=190g(10) \cdot (g(1) + g(2) + g(3) + g(4) + g(5)) = 190