Question
Mathematics Question on Relations and functions
Let S=1,2,3,4,5,6,7,8,9,10. Define f:S→S as
f(n)=⎩⎨⎧2n,1,2,3,4,5 2n−11,6,7,8,9,10if n∈if n∈
Let g:S→S be a function such that.
(f∘g)(n)={n+1, n−1,if n is oddif n is even
Then g(10)⋅(g(1)+g(2)+g(3)+g(4)+g(5)) is equal to __________.
Answer
∵$$f(n) = \begin{cases} 2n, & \text{if } n \in \\{1,2,3,4,5\\} \\\ 2n-11, & \text{if } n \in \\{6,7,8,9,10\\} \end{cases}
∴f(1)=2,f(2)=4,…,f(5)=10
and f(6)=1,f(7)=3,f(8)=5,…,f(10)=9
Now,
f(g(n))={n+1, n−1,if n is oddif n is even
∴f(g(10))=9⟹g(10)=10
f(g(1))=2⟹g(1)=1
f(g(2))=1⟹g(2)=6
f(g(3))=4⟹g(3)=2
f(g(4))=3⟹g(4)=7
f(g(5))=6⟹g(5)=3
∴ g(10)⋅(g(1)+g(2)+g(3)+g(4)+g(5))=190