Solveeit Logo

Question

Mathematics Question on Differential equations

Let
S = (0, 2\pi) - \left\\{\frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}\right\\}
. Let y = y(x), x∈S, be the solution curve of the differential equation
dydx=11+sin2x,y(π4)=12\frac{dy}{dx}=\frac{1}{1+sin⁡2x},y(\frac{π}{4})=\frac{1}{2}
.If the sum of abscissas of all the points of intersection of the curve y = y(x) with the curve
y=2sinxy=\sqrt2sin⁡x is kπ12\frac{kπ}{12},
then k is equal to _________.

Answer

The correct answer is 42
dydx=11+sin2x\frac{dy}{dx}=\frac{1}{1+sin⁡2x}
dy=sec2xdx(1+tanx)2⇒dy=\frac{sec^2⁡xdx}{(1+tan⁡ x)^2}
y=11+tanx+c⇒y=−\frac{1}{1+tan⁡x}+c
When
x=π4,y=12x=\frac{π}{4}, y=\frac{1}{2} gives c=1
So y=tanx1+tanxy=sinxsinx+cosxy=\frac{tan⁡x}{1+tan⁡x}⇒y=\frac{sin⁡x}{sin⁡x+cos⁡x}
Now, y=2sinxsinx=0y=\sqrt2sin⁡x ⇒sin⁡x=0
or
sinx+cosx=12sin⁡x+cos⁡x=\frac{1}{\sqrt2}
sinx = 0 gives x = π only
and
sinx+cosx=12sin(x+π4)=12sin⁡x+cos⁡x=\frac{1}{\sqrt2}⇒sin⁡(x+\frac{π}{4})=\frac{1}{2}
So
x+π4=5π6x+\frac{π}{4}=\frac{5π}{6} or 13π6x=7π12\frac{13π}{6}⇒x=\frac{7π}{12} or 23π12\frac{23π}{12}

Sum of all solutions =π+7π12+23π12=42π12= π+\frac{7π}{12}+\frac{23π}{12}=\frac{42π}{12}
Therefore, k = 42.