Question
Mathematics Question on Differential equations
Let
S = (0, 2\pi) - \left\\{\frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}\right\\}
. Let y = y(x), x∈S, be the solution curve of the differential equation
dxdy=1+sin2x1,y(4π)=21
.If the sum of abscissas of all the points of intersection of the curve y = y(x) with the curve
y=2sinx is 12kπ,
then k is equal to _________.
Answer
The correct answer is 42
dxdy=1+sin2x1
⇒dy=(1+tanx)2sec2xdx
⇒y=−1+tanx1+c
When
x=4π,y=21 gives c=1
So y=1+tanxtanx⇒y=sinx+cosxsinx
Now, y=2sinx⇒sinx=0
or
sinx+cosx=21
sinx = 0 gives x = π only
and
sinx+cosx=21⇒sin(x+4π)=21
So
x+4π=65π or 613π⇒x=127π or 1223π
Sum of all solutions =π+127π+1223π=1242π
Therefore, k = 42.