Solveeit Logo

Question

Real Analysis Question on Sequences and Series

Let R1 and R2 be the radii of convergence of the power series n=1(1)nxn1\sum\limits_{n=1}^{\infin}(-1)^nx^{n-1} and n=1(1)nxn+1n(n+1)\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)}, respectively. Then

A

R1 = R2

B

R2 > 1

C

n=1(1)nxn1\sum\limits_{n=1}^{\infin}(-1)^nx^{n-1} converges for all x ∈ [−1, 1]

D

n=1(1)nxn+1n(n+1)\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)} converges for all x ∈ [−1, 1]

Answer

R1 = R2

Explanation

Solution

The correct option is (A) : R1 = R2 and (D) : n=1(1)nxn+1n(n+1)\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)} converges for all x ∈ [−1, 1].