Solveeit Logo

Question

Mathematics Question on types of differential equations

Let ℝ → ℝ be function defined as
f(x) = αsin((π[x]2)(\frac{π[x]}{2})+[2-x],α∈R
where [t] is the greatest integer less than or equal to t.
If lim x→1 f(x) exists, then the value of04∫_0^4 f(x)dx
is equal to

A

-1

B

-2

C

1

D

2

Answer

-2

Explanation

Solution

The correct answer is (B):
f(x) = αsin(2π3\frac{-2π}{3})+[2-x]α∈R
Now,
∵ limx→-1 f(x) exists
∴ limx→-1 f(x) = limx→-1+f(x)
⇒ αsin(2π3\frac{-2π}{3})+3 = αsin(2π3\frac{-2π}{3})+2
⇒ -α=1
⇒ α = -1
Now, ∫40f(x)dx = ∫40(-sin(2π3\frac{-2π}{3})+[2-x])dx
= ∫10 1dx + ∫21-1dx+∫32-1dx+∫43(1-2)dx
= 1-1-1-1
= -2