Solveeit Logo

Question

Mathematics Question on integral

Let rk=01(1x7)kdx01(1x7)k+1dx,kNr_k = \frac{\int_{0}^{1} (1 - x^7)^k \, dx}{\int_{0}^{1} (1 - x^7)^{k+1} \, dx}, \, k \in \mathbb{N}. Then the value of k=11017(rk1) \sum_{k=1}^{10} \frac{1}{7(r_k - 1)}is equal to ______.

Answer

Ik=01(1x)kdxI_k = \int_0^1 (1 - x)^k dx

Ik=[(1x)kx]01+01k(1x)k1(1x)dxI_k = \left[(1 - x)^k \cdot x\right]_0^1 + \int_0^1 k(1 - x)^{k-1} \cdot (1 - x) dx

Ik=0+k01(1x)k1dxIkI_k = 0 + k \int_0^1 (1 - x)^{k-1} dx - I_k

Ik=kIk+kIk1I_k = -kI_k + kI_{k-1}

Ik(1+k)=kIk1I_k (1 + k) = kI_{k-1}

IkIk1=kk+1\frac{I_k}{I_{k-1}} = \frac{k}{k + 1}

Thus,

rk=7k+87k+7r_k = \frac{7k + 8}{7k + 7}

rk1=17(k+1)r_k - 1 = \frac{-1}{7(k + 1)}

Substituting in the summation:

k=11017(Ik1)=177k=110(k+1)=k=110(k+1)\sum_{k=1}^{10} \frac{1}{7(I_k - 1)} = \frac{1}{7} \cdot 7 \sum_{k=1}^{10} (k + 1) = \sum_{k=1}^{10} (k + 1)

Computing:

k=110(k+1)=k=110k+k=1101=55+10=65\sum_{k=1}^{10} (k + 1) = \sum_{k=1}^{10} k + \sum_{k=1}^{10} 1 = 55 + 10 = 65

Final Answer: 65