Question
Mathematics Question on integral
Let rk=∫01(1−x7)k+1dx∫01(1−x7)kdx,k∈N. Then the value of ∑k=1107(rk−1)1is equal to ______.
Answer
Ik=∫01(1−x)kdx
Ik=[(1−x)k⋅x]01+∫01k(1−x)k−1⋅(1−x)dx
Ik=0+k∫01(1−x)k−1dx−Ik
Ik=−kIk+kIk−1
Ik(1+k)=kIk−1
Ik−1Ik=k+1k
Thus,
rk=7k+77k+8
rk−1=7(k+1)−1
Substituting in the summation:
∑k=1107(Ik−1)1=71⋅7∑k=110(k+1)=∑k=110(k+1)
Computing:
∑k=110(k+1)=∑k=110k+∑k=1101=55+10=65
Final Answer: 65