Solveeit Logo

Question

Mathematics Question on Matrices

Let R=(x00 0y0 00z) be a non-zero 3×3 matrix, whereR = \begin{pmatrix} x & 0 & 0 \\\ 0 & y & 0 \\\ 0 & 0 & z \end{pmatrix} \text{ be a non-zero } 3 \times 3 \text{ matrix, where}

x=sinθ,y=sin(θ+2π3),z=sin(θ+4π3)x = \sin \theta, \quad y = \sin \left( \theta + \frac{2\pi}{3} \right), \quad z = \sin \left( \theta + \frac{4\pi}{3} \right)

and θ0,π2,π,3π2,2π\theta \neq 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi. For a square matrix MM, let trace(M)\text{trace}(M) denote the sum of all the diagonal entries of MM. Then, among the statements:

  1. Trace(R)=0\text{Trace}(R) = 0
  2. If trace(adj(adj(R)))=0\text{trace}(\text{adj}(\text{adj}(R))) = 0, then RR has exactly one non-zero entry.

Which of the following is true?

A

Only(I) is true

B

Only (II) is true

C

Neither (I) nor (II) is true

D

Both (I) and (II) are true

Answer

Only(I) is true

Explanation

Solution

Calculate the trace of RR: Since x+y+z=sinθ+sin(θ+2π3)+sin(θ+4π3)=0x + y + z = \sin \theta + \sin \left( \theta + \frac{2\pi}{3} \right) + \sin \left( \theta + \frac{4\pi}{3} \right) = 0, we have:

trace(R)=x+y+z=0.\text{trace}(R) = x + y + z = 0.

Thus, statement (I) is true.

Examine statement (II): adj(R)=(yz00 0xz0 00xy)\text{adj}(R) = \begin{pmatrix} yz & 0 & 0 \\\ 0 & xz & 0 \\\ 0 & 0 & xy \end{pmatrix}. Therefore,

adj(adj(R))=(x2yz00 0xy2z0 00xyz2).\text{adj}(\text{adj}(R)) = \begin{pmatrix} x^2yz & 0 & 0 \\\ 0 & xy^2z & 0 \\\ 0 & 0 & xyz^2 \end{pmatrix}.

The trace of adj(adj(R))\text{adj}(\text{adj}(R)) is xyz(x+y+z)=0xyz(x + y + z) = 0, even if RR has more than one non-zero entry.

Thus, statement (II) is false.