Solveeit Logo

Question

Question: Let \(R\) be the resultant of \(P\) and \(Q\) and if \(\left( {\dfrac{P}{3}} \right) = \left( {\dfra...

Let RR be the resultant of PP and QQ and if (P3)=(Q7)=(R5)\left( {\dfrac{P}{3}} \right) = \left( {\dfrac{Q}{7}} \right) = \left( {\dfrac{R}{5}} \right), then the angle between P and R is?
A) cos1(1114){\cos ^{ - 1}}\left( {\dfrac{{11}}{{14}}} \right)
B) cos1(1114){\cos ^{ - 1}}\left( { - \dfrac{{11}}{{14}}} \right)
C) 2π3\dfrac{{2\pi }}{3}
D) 5π6\dfrac{{5\pi }}{6}

Explanation

Solution

Here, in the question, we are given that RR is the resultant of PP and QQ vector and we have to find the angle between the vector PP and the vector RR. We know the formula to find the magnitude of resultant vector, which is R=P2+Q2+2PQcosθR = \sqrt {{P^2} + {Q^2} + 2PQ\cos \theta } , here PP, QQ, RR are the magnitude of vectors and θ\theta is the angle between vector PP, QQ. As we can see, in the given question the relation between three vectors is given so by using this we can find the value of θ\theta . There is an another relation, cosϕ=P+QcosθR\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R} where ϕ\phi is the angle between resultant vector RR and vector PP . So, from here we can find the value of the angle between PP and RR.
Formula used:
R=P2+Q2+2PQcosθR = \sqrt {{P^2} + {Q^2} + 2PQ\cos \theta }
On squaring both sides, we get
R2=P2+Q2+2PQcosθ{R^2} = {P^2} + {Q^2} + 2PQ\cos \theta
cosϕ=P+QcosθR\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}

Complete answer:
Given, P3=Q7=R5\dfrac{P}{3} = \dfrac{Q}{7} = \dfrac{R}{5}
Let, λ=P3=Q7=R5\lambda {\text{}} = \dfrac{P}{3} = \dfrac{Q}{7} = \dfrac{R}{5}
Or we can write it as,
P3=λ,Q7=λ,R5=λ\Rightarrow \dfrac{P}{3} = \lambda ,\dfrac{Q}{7} = \lambda ,\dfrac{R}{5} = \lambda
P=3λ,Q=7λ,R=5λ\Rightarrow P = 3\lambda ,Q = 7\lambda ,R = 5\lambda
We know that, R2=P2+Q2+2PQcosθ{R^2} = {P^2} + {Q^2} + 2PQ\cos \theta
Now, since we have values of PP, QQ and RR we can substitute these values in the above written formula to get the value of cosθ\cos \theta .
(5λ)2=(3λ)2+(7λ)2+2(3λ)(7λ)cosθ\Rightarrow {\left( {5\lambda } \right)^2} = {\left( {3\lambda } \right)^2} + {\left( {7\lambda } \right)^2} + 2\left( {3\lambda } \right)\left( {7\lambda } \right)\cos \theta
On simplifying, we get
25λ2=9λ2+49λ2+42λ2cosθ\Rightarrow 25{\lambda ^2} = 9{\lambda ^2} + 49{\lambda ^2} + 42{\lambda ^2}\cos \theta
Shift 9λ29{\lambda ^2} and 49λ249{\lambda ^2} to LHS,
25λ29λ249λ2=42λ2cosθ\Rightarrow 25{\lambda ^2} - 9{\lambda ^2} - 49{\lambda ^2} = 42{\lambda ^2}\cos \theta
33λ2=42λ2cosθ\Rightarrow {\text{}} - 33{\lambda ^2} = 42{\lambda ^2}\cos \theta
It can also be written as,
42λ2cosθ=33λ2\Rightarrow 42{\lambda ^2}\cos \theta {\text{}} = {\text{}} - 33{\lambda ^2}
cosθ=33λ242λ2\Rightarrow \cos \theta {\text{}} = \dfrac{{ - 33{\lambda ^2}}}{{42{\lambda ^2}}}
After cancelling out λ2{\lambda ^2} and division, we get
cosθ=1114\Rightarrow \cos \theta {\text{}} = \dfrac{{ - 11}}{{14}}
As we know that cosϕ=P+QcosθR\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}.
Now, we will substitute the values of PP, QQ, RR and cosθ\cos \theta in the above written formula.
cosϕ=3λ+7λ(1114)5λ\Rightarrow \cos \phi {\text{}} = \dfrac{{3\lambda {\text{}} + 7\lambda \left( {\dfrac{{ - 11}}{{14}}} \right)}}{{5\lambda }}
Take λ\lambda as a common factor
cosϕ=λ(3+7(1114))5λ\Rightarrow \cos \phi {\text{}} = \dfrac{{\lambda \left( {3 + 7\left( {\dfrac{{ - 11}}{{14}}} \right)} \right)}}{{5\lambda }}
On cancelling out λ\lambda , we get
cosϕ=(3+7(1114))5=3+(112)5\Rightarrow \cos \phi {\text{}} = \dfrac{{\left( {3 + 7\left( {\dfrac{{ - 11}}{{14}}} \right)} \right)}}{5} = \dfrac{{3 + \left( {\dfrac{{ - 11}}{2}} \right)}}{5}
cosϕ=31125\Rightarrow \cos \phi {\text{}} = \dfrac{{3 - \dfrac{{11}}{2}}}{5}
Solve the numerator by taking LCM
cosϕ=61125\Rightarrow \cos \phi {\text{}} = \dfrac{{\dfrac{{6 - 11}}{2}}}{5}
cosϕ=525\Rightarrow \cos \phi {\text{}} = \dfrac{{\dfrac{{ - 5}}{2}}}{5}
It can also be written as,
cosϕ=52×15\Rightarrow \cos \phi {\text{}} = \dfrac{{ - 5}}{2} \times \dfrac{1}{5}
cosϕ=12\Rightarrow \cos \phi {\text{}} = \dfrac{{ - 1}}{2}
On shifting cos\cos to RHS, we get
ϕ=cos1(12)\Rightarrow \phi {\text{}} = {\cos ^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)
We know that, cos1(x)=πcos1x,x[1,1]{\cos ^{ - 1}}\left( { - x} \right) = \pi {\text{}} - {\cos ^{ - 1}}x,x \in \left[ { - 1,1} \right]. Therefore, we get
ϕ=πcos1(12)\Rightarrow \phi {\text{}} = \pi {\text{}} - {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right)
We know that cosπ3=12\cos \dfrac{\pi }{3} = \dfrac{1}{2}. So, on replacing, we get
ϕ=πcos1(cosπ3)\Rightarrow \phi {\text{}} = \pi {\text{}} - {\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right)
Also, we know cos1(cosθ)=θ{\cos ^{ - 1}}\left( {\cos \theta } \right) = \theta . Therefore, we get
ϕ=ππ3\Rightarrow \phi {\text{}} = \pi {\text{}} - \dfrac{\pi }{3}
ϕ=2π3\Rightarrow \phi {\text{}} = \dfrac{{2\pi }}{3}
Thus, the angle between PP and RR is 2π3\dfrac{{2\pi }}{3}.
Therefore, the correct option is C.

Note:
Here, in the given question we have found the value of angle between PP and RR using the formula cosϕ=P+QcosθR\cos \phi {\text{}} = \dfrac{{P + Q\cos \theta }}{R}. If the question was about finding the value of the angle between QQ and RR we will not apply this formula. We will use cosϕ=Q+PcosθR\cos \phi {\text{}} = \dfrac{{Q + P\cos \theta }}{R}. To solve these type of questions we should know all the required values of standard angles say,0{0^\circ }, 30{30^\circ }, 60{60^\circ }, 90{90^\circ }, 180{180^\circ }, 270{270^\circ }, 360{360^\circ } respectively for each trigonometric term such as sin\sin , cos\cos , tan\tan , cot\cot , sec\sec , cosec\cos ec, etc.