Solveeit Logo

Question

Question: Let R be a relation on the set N of natural numbers defined by nRm ⇔ n is a factor of m(i.e., n|m) ....

Let R be a relation on the set N of natural numbers defined by nRm ⇔ n is a factor of m(i.e., n|m) . Then R is
1.  Reflexive and symmetric{\text{ }}Reflexive{\text{ }}and{\text{ }}symmetric
2.  Transitive and symmetric{\text{ }}Transitive{\text{ }}and{\text{ }}symmetric
3.  Equivalence{\text{ }}Equivalence
4.  Reflexive, transitive but not symmetric{\text{ }}Reflexive,{\text{ }}transitive{\text{ }}but{\text{ }}not{\text{ }}symmetric

Explanation

Solution

We have to find the relation R . We solve this using the concept of relation and function . We should have knowledge of the relation or of the function . We should have the knowledge of types of relations and we should know how to prove the types of relations . We should also know about equivalence relations .

Complete step-by-step solution:
Given :
The set N of natural numbers defined by nRmnn{R}m \Leftrightarrow n is a factor of m(i.e., nmn|m )
Types of relations :
(1) reflexive relation
(2) symmetric relation
(3) transitive relation
To check the relation between the relations :-
For reflexive relation :
If (n , n)R\left( {n{\text{ }},{\text{ }}n} \right) \in R , for every nNn \in N
nn : nn|n{\text{ }}:{\text{ }}n is a factor of nn
Hence the relation is reflexive
For symmetric relation :
If ( n , m )R\left( {{\text{ }}n{\text{ }},{\text{ }}m{\text{ }}} \right) \in R implies that ( m , n )R\left( {{\text{ }}m{\text{ }},{\text{ }}n{\text{ }}} \right) \in R for all n , mNn{\text{ }},{\text{ }}m \in N
nm : nn|m{\text{ }}:{\text{ }}n is a factor of mm
So , it does not implies that
mn : mm|n{\text{ }}:{\text{ }}m is a factor of nn
As , both numbers can’t be factors of each other .
Hence the relation is not symmetric .
For transitive relation :
If ( n , m)R\left( {{\text{ }}n{\text{ }},{\text{ }}m} \right) \in R and (m , o)R\left( {m{\text{ }},{\text{ }}o} \right) \in R implies that ( n , o)R\left( {{\text{ }}n{\text{ }},{\text{ }}o} \right) \in R for all n , m , oNn{\text{ }},{\text{ }}m{\text{ }},{\text{ }}o \in N
nm : nn|m{\text{ }}:{\text{ }}n is a factor of mm
mo : mm|o{\text{ }}:{\text{ }}m is a factor of oo
So , it implies that
no : nn|o{\text{ }}:{\text{ }}n is a factor of oo
Thus , n , oRn{\text{ }},{\text{ }}o \in R for all values of n , oNn{\text{ }},{\text{ }}o \in N
Hence the relation is transitive .
Thus , the relation RR is reflexive and transitive but not symmetric .
Hence , the correct option is   (4)\;\left( 4 \right) .

Note: A relation R in a set A is called empty relation , if no element of A is related to any element of A I.e.   R = A × A .\;R{\text{ }} = {\text{ }}\emptyset \subset A{\text{ }} \times {\text{ }}A{\text{ }}.
A relation R in a set A is called a universal relation , if each element of A is related to any element of A I.e. R = A × AR{\text{ }} = {\text{ }}A{\text{ }} \times {\text{ }}A .
Both the empty relation and the universal relation are sometimes called trivial relations .