Question
Mathematics Question on Relations and functions
Let R be a relation from N to N defined by R = \\{(a, b) : a, b \in N and a = b^2\\}. Which of the following is true?
A
(a,a)∈R, for all a∈N
B
(d,b)∈R, implies (b,a)∈R
C
(a,b)∈R, (b,c)∈R implies (a,c)∈R
D
None of these
Answer
None of these
Explanation
Solution
We are given R = \\{(a, b): a, b \in N and a = b^2\\} (b2,b):b∈N (a) False. True, only when a=1, (a,a)=(1,1)=(12,1)∈R. (b) False. If (a,b)∈R ⇒a=b2?\therefore \left(a, b\right) \in R\Rightarrow \left(b, a\right) \notin R.(c)False.If\left(a, b\right) \in R\Rightarrow a=b^{2}\quad\ldots\left(i\right)and\left(b,c\right)\in R\Rightarrow b=c^{2}\quad\ldots\left(ii\right)From\left(i\right)and\left(ii\right), a=\left(c^{2}\right)^{2}=c^{4} ? ⇒(a,b)∈R and (b,c)∈R but (a,c)∈R.