Solveeit Logo

Question

Mathematics Question on Relations and functions

Let RR be a relation from NN to NN defined by R = \\{(a, b) : a, b \in N and a = b^2\\}. Which of the following is true?

A

(a,a)R(a, a) \in R, for all aNa \in N

B

(d,b)R(d, b) \in R, implies (b,a)R(b, a) \in R

C

(a,b)R(a, b) \in R, (b,c)R(b, c) \in R implies (a,c)R(a, c) \in R

D

None of these

Answer

None of these

Explanation

Solution

We are given R = \\{(a, b): a, b \in N and a = b^2\\} (b2,b):bN\\{(b^2, b) : b \in N\\} (a) False. True, only when a=1a = 1, (a,a)=(1,1)=(12,1)R(a, a) = (1,1) = (1^2, 1) \in R. (b) False. If (a,b)R\left(a,b\right) \in R a=b2?\Rightarrow a=b^{2} ? \therefore \left(a, b\right) \in R \Rightarrow \left(b, a\right) \notin R.(c)False.If. (c) False. If \left(a, b\right) \in R \Rightarrow a=b^{2}\quad\ldots\left(i\right)andand\left(b,c\right)\in R \Rightarrow b=c^{2}\quad\ldots\left(ii\right)FromFrom\left(i\right)andand\left(ii\right), a=\left(c^{2}\right)^{2}=c^{4} ? (a,b)R\Rightarrow (a, b) \in R and (b,c)R(b, c) \in R but (a,c)R(a, c) \in R.