Solveeit Logo

Question

Question: Let R and S be two equivalence relations on a set A. Then...

Let R and S be two equivalence relations on a set A. Then

A

R ∪ S is an equivalence relation on A

B

R ∩ S is an equivalence relation on A

C

RSR - S is an equivalence relation on A

D

None of these

Answer

R ∩ S is an equivalence relation on A

Explanation

Solution

Given, R and S are relations on set A.

RCA×AR \cap C \subseteq A \times A

RSR \cap Sis also a relation on A.

Reflexivity : Let a be an arbitrary element of A. Then, aAa \in A(a,a)R( a , a ) \in Rand (a,a)S( a , a ) \in S , [\bullet \bulletR and S are reflexive]

(a,a)RS( a , a ) \in R \cap S

Thus, (a,a)RS( a , a ) \in R \cap Sfor all aAa \in A.

So, RSR \cap Sis a reflexive relation on A.

Symmetry : Let a,bAa , b \in Asuch that (a,b)RS( a , b ) \in R \cap S .

Then, (a,b)RS( a , b ) \in R \cap S(a,b)R( a , b ) \in Rand (a,b)S( a , b ) \in S

(b,a)R( b , a ) \in R and (b,a)S( b , a ) \in S , [\bullet \bulletR and S are symmetric]

(b,a)RS( b , a ) \in R \cap S

Thus, (a,b)RS( a , b ) \in R \cap S

(b,a)RS( b , a ) \in R \cap S for all (a,b)RS( a , b ) \in R \cap S .

So, RSR \cap Sis symmetric on A.

Transitivity : Let (b,c)RS( b , c ) \in R \cap S

{((a,b)R\{ ( ( a , b ) \in R and (a,b)S)}( a , b ) \in S ) \} and {((b,c)R\{ ( ( b , c ) \in R and (b,c)S}( b , c ) \in S \}

{(a,b)R,(b,c)R}\{ ( a , b ) \in R , ( b , c ) \in R \}and {(a,b)S,(b,c)S}\{ ( a , b ) \in S , ( b , c ) \in S \}

(a,c)R( a , c ) \in Rand (a,c)S( a , c ) \in S [R and S are transitive So (a,b)R and (b,c)R(a,c)R(a,b)S and (b,c)S(a,c)S\left[ \begin{array} { l } \because R \text { and } S \text { are transitive So } \\ ( a , b ) \in R \text { and } ( b , c ) \in R \Rightarrow ( a , c ) \in R \\ ( a , b ) \in S \text { and } ( b , c ) \in S \Rightarrow ( a , c ) \in S \end{array} \right.

(a,c)RS( a , c ) \in R \cap S

Thus, (a,b)RS( a , b ) \in R \cap S and(b,c)RS(a,c)RS( b , c ) \in R \cap S \Rightarrow ( a , c ) \in R \cap S.

So, RSR \cap Sis transitive on A.

Hence, R is an equivalence relation on A.