Question
Question: Let \(R = (5\sqrt{5} + 11)^{2n + 1}\) and \(f = R - \lbrack R\rbrack\) where [.] denotes the greates...
Let R=(55+11)2n+1 and f=R−[R] where [.] denotes the greatest integer function. The value of R.f is
A
42n+1
B
42n
C
42n−1
D
4−2n
Answer
42n+1
Explanation
Solution
Since f=R−[R], R=f+[R]
[55+11]2n+1=f+[R], where [R] is integer
Now let f′=[55−11]2n+1,0<f′<1
f+[R]−f′=[55+11]2n+1−[55−11]2n+1=2[2n+1C1(55)2n(11)1+2n+1⥂C3(55)2n−2(11)3+.......]
=2.(Integer) = 2K(K∈N) = Even integer
Hence f−f′ = even integer – [R], but −1<f−f′<1. Therefore, f−f′=0 ∴f=f′
Hence R.f = R.f1=(55+1)2n+1(55−11)2n+1=42n+1.