Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Let Q be the foot of perpendicular from the origin to the plane 4x-3y+z+13=0 and R be a point {-1,1,6} on the plane. Then length QR is

A

14\sqrt{14}

B

192\sqrt{\frac{19}{2}}

C

3723 \sqrt{\frac{7}{2}}

D

32\frac{3}{\sqrt{2}}

Answer

3723 \sqrt{\frac{7}{2}}

Explanation

Solution

Let P be the image of O in the given plane.

The plane directions

Equation of the plane, 4x - 3y + z + 13 = 0 OP is normal to the plane, therefore direction ratio of OP are proportional to 4, - 3, 1 Since OP passes through (0, 0, 0) and has direction ratio proportional to 4, -3, 1.

Therefore equation of OP is x04=y03=z01=r(let)\frac{x-0}{4} = \frac{y-0}{-3} = \frac{z-0}{1} =r \, (let)

x=4r,y=3r,z=r\therefore x = 4r, y = - 3r, z = r

Let the coordinate of P be (4r,3r,r)\left(4r, - 3r, r\right)

Since Q be the mid point of OP

Q=(2r,32r,r2)\therefore Q = \left(2r , - \frac{3}{2}r, \frac{r}{2}\right) Since Q lies in the given plane 4x3y+z+13=04x - 3y + z + 13 = 0

8r+92r+r2+13=0\therefore 8r + \frac{9}{2} r + \frac{r}{2} +13 =0 r=138+92+12=2626=1\Rightarrow r = \frac{-13}{8+ \frac{9}{2} + \frac{1}{2}}= \frac{-26}{26} = - 1

Q=(2,32,12)\therefore Q = \left(-2 , \frac{3}{2} , - \frac{1}{2}\right) QR=(1+2)2+(132)2+(6+12)2QR = \sqrt{\left(-1+2\right)^{2} + \left(1- \frac{3}{2}\right)^{2} + \left(-6+ \frac{1}{2}\right)^{2}} =1+14+1214=372= \sqrt{1+\frac{1}{4} + \frac{121}{4}} = 3 \sqrt{\frac{7}{2}}

so, The correct option is(C): 3723{\sqrt\frac{7}{2}}.